首页 > 编程语言 > 详细

《数据结构与算法分析:C语言描述》复习——第四章“树”——伸展树

时间:2014-06-17 00:21:50      阅读:572      评论:0      收藏:0      [点我收藏+]

2014.06.15 20:42

简介:

  伸展树是一种介于普通二叉搜索树和AVL树之间的,比较平衡的一种二叉搜索树。它不像AVL树那样总是高度平衡,虽然单次操作的就可能耗费O(n)时间,但连续M次基本操作的时间复杂度能做到O(M * log(N)),M当然不能和1太接近。这种复杂度叫做均摊复杂度,英文叫amortiized complexity。当我学这门课的时候,这个概念我根本不理解,伸展树我也没有动手写过。后来在多个编程题目中的算法分析中,逐渐明白了均摊复杂度的意义。伸展树的一大特点,就是每次要访问一个节点,一定要想办法把它弄到根节点。这个办法,就是“旋转”。如果你明白AVL树的旋转,这个自然也不必多说了。不过,伸展树除了左单旋转、右单旋转、左右双旋转、右左双旋转之外,还用到了左左双旋转,右右双旋转。AVL旋转是为了恢复树的平衡,伸展树的旋转则是为了把一个节点一直旋转到根节点。在我费劲力气实现了AVL树之后,我以为能通过删掉很多代码把它变成伸展树,结果除了不再记录树的高度之外,我没删掉多少代码,还额外增加了两个旋转。事实证明伸展树也是个好想但不好写的结构。

图示:

  照理说增删改查都应该给出图示,但我只想用图示说明一个节点是如何被旋转到根节点的。旋转不是为了恢复平衡,但旋转的确可以让一棵树变得更平衡,这也是伸展树高效率的关键——越旋转越平衡。

  bubuko.com,布布扣

实现:

  1 // My implementation for splay tree, modified from my avl tree.
  2 #include <iostream>
  3 #include <string>
  4 #include <vector>
  5 using namespace std;
  6 
  7 struct TreeNode {
  8     int val;
  9     TreeNode *left;
 10     TreeNode *right;
 11     TreeNode *parent;
 12     TreeNode(int _val): val(_val), left(nullptr), right(nullptr), parent(nullptr) {};
 13 };
 14 
 15 class SplayTree {
 16 public:
 17     SplayTree() {
 18         m_root = nullptr;
 19     }
 20     
 21     bool empty() {
 22         return m_root == nullptr;
 23     }
 24     
 25     void clear() {
 26         _deleteTree(m_root);
 27     }
 28     
 29     void insertNode(const int &val) {
 30         if (m_root == nullptr) {
 31             m_root = new TreeNode(val);
 32             return;
 33         }
 34 
 35         TreeNode *ptr = _findNode(val);
 36         
 37         if (val == ptr->val) {
 38             return;
 39         }
 40         
 41         if (val < ptr->val) {
 42             ptr->left = new TreeNode(val);
 43             ptr->left->parent = ptr;
 44             ptr = ptr->left;
 45         } else {
 46             ptr->right = new TreeNode(val);
 47             ptr->right->parent = ptr;
 48             ptr = ptr->right;
 49         }
 50         _splayNode(ptr);
 51     }
 52     
 53     void deleteNode(const int &val) {
 54         if (m_root == nullptr) {
 55             return;
 56         }
 57         
 58         TreeNode *par, *cur;
 59         
 60         cur = _findNode(val);
 61         if (cur == nullptr || cur->val != val) {
 62             return;
 63         }
 64         // the node is splayed to the root, cur must be m_root.
 65         par = cur->parent;
 66         
 67         TreeNode *ptr;
 68         
 69         if (cur->left != nullptr) {
 70             ptr = _shiftLeft(cur);
 71             return;
 72         }
 73     
 74         if (cur->right != nullptr) {
 75             ptr = _shiftRight(cur);
 76             return;
 77         }
 78     
 79         if (par == nullptr) {
 80             delete cur;
 81             m_root = nullptr;
 82         } else if (val < par->val) {
 83             delete cur;
 84             par->left = nullptr;
 85         } else {
 86             delete cur;
 87             par->right = nullptr;
 88         }
 89     }
 90     
 91     void updateNode(const int &old_val, const int &new_val) {
 92         deleteNode(old_val);
 93         insertNode(new_val);
 94     }
 95     
 96     bool contains(const int &val) {
 97         TreeNode *ptr = _findNode(val);
 98         return ptr == nullptr ? false : ptr->val == val ? true : false;
 99     }
100     
101     string preorderTraversal() {
102         string result;
103         _preorderTraversalRecursive(m_root, result);
104         return result;
105     }
106     
107     string inorderTraversal() {
108         string result;
109         _inorderTraversalRecursive(m_root, result);
110         return result;
111     }
112     
113     string postorderTraversal() {
114         string result;
115         _postorderTraversalRecursive(m_root, result);
116         return result;
117     }
118     
119     ~SplayTree() {
120         clear();
121     }
122 private:
123     TreeNode *m_root;
124     
125     void _deleteTree(TreeNode *&root) {
126         if (root == nullptr) {
127             return;
128         }
129         _deleteTree(root->left);
130         _deleteTree(root->right);
131         delete root;
132         root = nullptr;
133     }
134     
135     TreeNode* _findNode(const int &val) {
136         TreeNode *ptr;
137         
138         ptr = m_root;
139         while (ptr != nullptr) {
140             if (val == ptr->val) {
141                 return ptr;
142             }
143             if (val < ptr->val) {
144                 if (ptr->left != nullptr) {
145                     ptr = ptr->left;
146                 } else {
147                     return ptr;
148                 }
149             } else {
150                 if (ptr->right != nullptr) {
151                     ptr = ptr->right;
152                 } else {
153                     return ptr;
154                 }
155             }
156         }
157         if (ptr->val == val) {
158             _splayNode(ptr);
159             return m_root;
160         }
161 
162         return ptr;
163     }
164     
165     void _preorderTraversalRecursive(const TreeNode  *root, string &result) {
166         result.push_back({);
167         if (root == nullptr) {
168             // ‘#‘ represents NULL.
169             result.push_back(#);
170         } else {
171             result.append(to_string(root->val));
172             _preorderTraversalRecursive(root->left, result);
173             _preorderTraversalRecursive(root->right, result);
174         }
175         result.push_back(});
176     }
177     
178     void _inorderTraversalRecursive(const TreeNode  *root, string &result) {
179         result.push_back({);
180         if (root == nullptr) {
181             // ‘#‘ represents NULL.
182             result.push_back(#);
183         } else {
184             _inorderTraversalRecursive(root->left, result);
185             result.append(to_string(root->val));
186             _inorderTraversalRecursive(root->right, result);
187         }
188         result.push_back(});
189     }
190     
191     void _postorderTraversalRecursive(const TreeNode  *root, string &result) {
192         result.push_back({);
193         if (root == nullptr) {
194             // ‘#‘ represents NULL.
195             result.push_back(#);
196         } else {
197             _postorderTraversalRecursive(root->left, result);
198             _postorderTraversalRecursive(root->right, result);
199             result.append(to_string(root->val));
200         }
201         result.push_back(});
202     }
203     
204     TreeNode *_shiftLeft(TreeNode *root) {
205         TreeNode *cur, *par;
206         
207         // root and root->left is guaranteed to be non-empty.
208         par = root;
209         cur = par->left;
210         
211         while (cur->right != nullptr) {
212             par = cur;
213             cur = cur->right;
214         }
215         root->val = cur->val;
216         
217         if (cur->left != nullptr) {
218             return _shiftLeft(cur);
219         }
220         
221         if (cur->right != nullptr) {
222             return _shiftRight(cur);
223         }
224         
225         if (cur == par->left) {
226             delete par->left;
227             par->left = nullptr;
228         } else {
229             delete par->right;
230             par->right = nullptr;
231         }
232 
233         return par;
234     }
235 
236     TreeNode *_shiftRight(TreeNode *root) {
237         TreeNode *cur, *par;
238         
239         // root and root->right is guaranteed to be non-empty.
240         par = root;
241         cur = par->right;
242         
243         while (cur->left != nullptr) {
244             par = cur;
245             cur = cur->left;
246         }
247         root->val = cur->val;
248         
249         if (cur->left != nullptr) {
250             return _shiftLeft(cur);
251         }
252         
253         if (cur->right != nullptr) {
254             return _shiftRight(cur);
255         }
256         
257         if (cur == par->left) {
258             delete par->left;
259             par->left = nullptr;
260         } else {
261             delete par->right;
262             par->right = nullptr;
263         }
264         
265         return par;
266     }
267     
268     void _singleRotationLeft(TreeNode *cur) {
269         // Subtree A is deeper than subtree B.
270         // Before rotation:
271         //     X
272         //    / 273         //   Y   C
274         //  / 275         // A   B
276         // ----------
277         // After rotation:
278         //   Y
279         //  / 280         // A   X
281         //    / 282         //   B   C
283         TreeNode *par = cur->parent;
284         TreeNode *B;
285         TreeNode *X, *Y;
286         
287         X = cur;
288         Y = cur->left;
289         B = Y->right;
290         
291         Y->right = X;
292         X->parent = Y;
293         X->left = B;
294         if (B != nullptr) {
295             B->parent = Y;
296         }
297         
298         if (par == nullptr) {
299             m_root = Y;
300         } else if (par->left == cur) {
301             par->left = Y;
302         } else {
303             par->right = Y;
304         }
305         Y->parent = par;
306     }
307     
308     void _singleRotationRight(TreeNode *cur) {
309         // Subtree C is deeper than subtree B.
310         // Before rotation:
311         //   X
312         //  / 313         // A   Y
314         //    / 315         //   B   C
316         // ----------
317         // After rotation:
318         //     Y
319         //    / 320         //   X   C
321         //  / 322         // A   B
323         TreeNode *par = cur->parent;
324         TreeNode *B;
325         TreeNode *X, *Y;
326         
327         X = cur;
328         Y = cur->right;
329         B = Y->left;
330         
331         Y->left = X;
332         X->parent = Y;
333         X->right = B;
334         if (B != nullptr) {
335             B->parent = X;
336         }
337         
338         if (par == nullptr) {
339             m_root = Y;
340         } else if (par->left == cur) {
341             par->left = Y;
342         } else {
343             par->right = Y;
344         }
345         Y->parent = par;
346     }
347     
348     void _doubleRotationLeftLeft(TreeNode *cur) {
349         // This is only for splay tree, not AVL.
350         // Before rotation:
351         //       X
352         //      / 353         //     Y   D
354         //    / 355         //   Z   C
356         //  / 357         // A   B
358         // ----------
359         // After rotation:
360         //   Z
361         //  / 362         // A   Y
363         //    / 364         //   B   X
365         //      / 366         //     C   D
367         TreeNode *par = cur->parent;
368         TreeNode *B, *C;
369         TreeNode *X, *Y, *Z;
370         
371         X = cur;
372         Y = X->left;
373         Z = Y->left;
374         B = Z->right;
375         C = Y->right;
376         
377         Z->right = Y;
378         Y->parent = Z;
379         Y->right = X;
380         X->parent = Y;
381         Y->left = B;
382         if (B != nullptr) {
383             B->parent = Y;
384         }
385         X->left = C;
386         if (C != nullptr) {
387             C->parent = X;
388         }
389         
390         if (par == nullptr) {
391             m_root = Z;
392         } else if (par->left == cur) {
393             par->left = Z;
394         } else {
395             par->right = Z;
396         }
397         Z->parent = par;
398     }
399     
400     void _doubleRotationLeftRight(TreeNode *cur) {
401         // Subtree Z is deeper than subtree A. Single rotation won‘t work, so let‘s use this one instead.
402         // Before rotation:
403         //     X
404         //    / 405         //   Y   D
406         //  / 407         // A   Z
408         //    / 409         //   B   C
410         // ----------
411         // After rotation:
412         //      Z
413         //    /   414         //   Y     X
415         //  / \   / 416         // A   B C   D
417         TreeNode *par = cur->parent;
418         TreeNode *B, *C;
419         TreeNode *X, *Y, *Z;
420         
421         X = cur;
422         Y = X->left;
423         Z = Y->right;
424         B = Z->left;
425         C = Z->right;
426         
427         Z->left = Y;
428         Y->parent = Z;
429         Z->right = X;
430         X->parent = Z;
431         Y->right = B;
432         if (B != nullptr) {
433             B->parent = X;
434         }
435         X->left = C;
436         if (C != nullptr) {
437             C->parent = X;
438         }
439         
440         if (par == nullptr) {
441             m_root = Z;
442         } else if (par->left == cur) {
443             par->left = Z;
444         } else {
445             par->right = Z;
446         }
447         Z->parent = par;
448     }
449     
450     void _doubleRotationRightLeft(TreeNode *cur) {
451         // Subtree Z is deeper than subtree D. Single rotation won‘t work, so let‘s use this one instead.
452         // Before rotation:
453         //   X
454         //  / 455         // A   Y
456         //    / 457         //   Z   D
458         //  / 459         // B   C
460         // ----------
461         // After rotation:
462         //      Z
463         //    /   464         //   X     Y
465         //  / \   / 466         // A   B C   D
467         TreeNode *par = cur->parent;
468         TreeNode *B, *C;
469         TreeNode *X, *Y, *Z;
470         
471         X = cur;
472         Y = X->right;
473         Z = Y->left;
474         B = Z->left;
475         C = Z->right;
476         
477         Z->left = X;
478         X->parent = Z;
479         Z->right = Y;
480         Y->parent = Z;
481         X->right = B;
482         if (B != nullptr) {
483             B->parent = X;
484         }
485         Y->left = C;
486         if (C != nullptr) {
487             C->parent = Y;
488         }
489         
490         if (par == nullptr) {
491             m_root = Z;
492         } else if (par->left == cur) {
493             par->left = Z;
494         } else {
495             par->right = Z;
496         }
497         Z->parent = par;
498     }
499     
500     void _doubleRotationRightRight(TreeNode *cur) {
501         // This is only for splay tree, not AVL.
502         // Before rotation:
503         //   X
504         //  / 505         // A   Y
506         //    / 507         //   B   Z
508         //      / 509         //     C   D
510         // ----------
511         // After rotation:
512         //       Z
513         //      / 514         //     Y   D
515         //    / 516         //   X   C
517         //  / 518         // A   B
519         TreeNode *par = cur->parent;
520         TreeNode *B, *C;
521         TreeNode *X, *Y, *Z;
522         
523         X = cur;
524         Y = X->right;
525         Z = Y->right;
526         B = Y->left;
527         C = Z->left;
528         
529         Z->left = Y;
530         Y->parent = Z;
531         Y->left = X;
532         X->parent = Y;
533         X->right = B;
534         if (B != nullptr) {
535             B->parent = X;
536         }
537         Y->right = C;
538         if (C != nullptr) {
539             C->parent = Y;
540         }
541         
542         if (par == nullptr) {
543             m_root = Z;
544         } else if (par->left == cur) {
545             par->left = Z;
546         } else {
547             par->right = Z;
548         }
549         Z->parent = par;
550     }
551     
552     void _splayNode(TreeNode *cur) {
553         if (m_root == nullptr || cur == nullptr) {
554             return;
555         }
556         
557         TreeNode *par, *grand;
558         
559         while (cur != nullptr && cur->parent != nullptr) {
560             par = cur->parent;
561             grand = par->parent;
562             if (grand == nullptr) {
563                 if (par->left == cur) {
564                     _singleRotationLeft(par);
565                 } else {
566                     _singleRotationRight(par);
567                 }
568                 return;
569             }
570             if (grand->left == par) {
571                 if (par->left == cur) {
572                     _doubleRotationLeftLeft(grand);
573                 } else {
574                     _doubleRotationLeftRight(grand);
575                 }
576             } else {
577                 if (par->left == cur) {
578                     _doubleRotationRightLeft(grand);
579                 } else {
580                     _doubleRotationRightRight(grand);
581                 }
582             }
583         }
584     }
585 };
586 
587 int main()
588 {
589     SplayTree tree;
590     
591     tree.clear();
592     tree.insertNode(1);
593     cout << tree.preorderTraversal() << endl;
594     tree.insertNode(2);
595     cout << tree.preorderTraversal() << endl;
596     tree.insertNode(3);
597     cout << tree.preorderTraversal() << endl;
598     tree.insertNode(4);
599     cout << tree.preorderTraversal() << endl;
600     tree.insertNode(5);
601     cout << tree.preorderTraversal() << endl;
602     tree.insertNode(6);
603     cout << tree.preorderTraversal() << endl;
604     // until now the tree is skewed.
605     // look at this step.
606     tree.insertNode(-1);
607     cout << tree.preorderTraversal() << endl;
608     tree.deleteNode(6);
609     cout << tree.preorderTraversal() << endl;
610     tree.deleteNode(5);
611     cout << tree.preorderTraversal() << endl;
612     tree.deleteNode(4);
613     cout << tree.preorderTraversal() << endl;
614     tree.deleteNode(3);
615     cout << tree.preorderTraversal() << endl;
616     tree.deleteNode(2);
617     cout << tree.preorderTraversal() << endl;
618     tree.deleteNode(1);
619     cout << tree.preorderTraversal() << endl;
620 
621     return 0;
622 }

 

《数据结构与算法分析:C语言描述》复习——第四章“树”——伸展树,布布扣,bubuko.com

《数据结构与算法分析:C语言描述》复习——第四章“树”——伸展树

原文:http://www.cnblogs.com/zhuli19901106/p/3789972.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!