期间遇到了无法转value的值为int型,我採用try catch解决
str2 2
str1 1
str3 3
str1 4
str4 7
str2 5
str3 9
用的\t隔开,得到结果
str1 1,4
str2 2,5
str3 3,9
str4 7
我这里map,reduce都是单独出来的类,用了自己定义的key
package com.kane.mr;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
import com.j_spaces.obf.fi;
//str2 2
//str1 1
//str3 3
//str1 4
//str4 7
//str2 5
//str3 9
public class IntPair implements WritableComparable<IntPair>{
public String getFirstKey() {
return firstKey;
}
public void setFirstKey(String firstKey) {
this.firstKey = firstKey;
}
public int getSecondKey() {
return secondKey;
}
public void setSecondKey(int secondKey) {
this.secondKey = secondKey;
}
private String firstKey;//str1
private int secondKey;//1
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(firstKey);
out.writeInt(secondKey);
}
@Override
public void readFields(DataInput in) throws IOException {
firstKey=in.readUTF();
secondKey=in.readInt();
}
//这里做比較,还有一个是自身本类,对key进行排序
@Override
public int compareTo(IntPair o) {
// int first=o.getFirstKey().compareTo(this.firstKey);
// if (first!=0) {
// return first;
// }
// else {
// return o.getSecondKey()-this.secondKey;
// }
return o.getFirstKey().compareTo(this.getFirstKey());
}
}
package com.kane.mr;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class SortMapper extends Mapper<Object,Text,IntPair,IntWritable>{
public IntPair intPair=new IntPair();
public IntWritable intWritable=new IntWritable(0);
@Override
protected void map(Object key, Text value,//str1 1
Context context)
throws IOException, InterruptedException {
//String[] values=value.toString().split("/t");
System.out.println(value);
int intValue;
try {
intValue = Integer.parseInt(value.toString());
} catch (NumberFormatException e) {
intValue=6;
}//不加try catch总是读取value时,无法转成int型
intPair.setFirstKey(key.toString());
intPair.setSecondKey(intValue);
intWritable.set(intValue);
context.write(intPair, intWritable);// key(str2 2) 2
}
}
package com.kane.mr;
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class SortReducer extends Reducer<IntPair, IntWritable, Text,Text>{
@Override
protected void reduce(IntPair key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {
StringBuffer combineValue=new StringBuffer();
Iterator<IntWritable> itr=values.iterator();
while (itr.hasNext()) {
int value=itr.next().get();
combineValue.append(value+",");
}
context.write(new Text(key.getFirstKey()),new Text(combineValue.toString()));
}
}
package com.kane.mr;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Partitioner;
public class PartionTest extends Partitioner<IntPair, IntWritable>{
@Override
public int getPartition(IntPair key, IntWritable value, int numPartitions) {//reduce个数
return (key.getFirstKey().hashCode()&Integer.MAX_VALUE%numPartitions);
}
}
package com.kane.mr;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
public class TextComparator extends WritableComparator{
public TextComparator(){
super(IntPair.class,true);
}
@Override
public int compare(WritableComparable a, WritableComparable b) {
IntPair o1=(IntPair)a;
IntPair o2=(IntPair)b;
return o1.getFirstKey().compareTo(o2.getFirstKey());
}
}
package com.kane.mr;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
@SuppressWarnings("rawtypes")
public class TextIntCompartor extends WritableComparator{
protected TextIntCompartor() {
super(IntPair.class,true);
}
@Override
public int compare(WritableComparable a, WritableComparable b) {
IntPair o1=(IntPair)a;
IntPair o2=(IntPair)b;
int first=o1.getFirstKey().compareTo(o2.getFirstKey());
if (first!=0) {
return first;
}
else {
return o1.getSecondKey()-o2.getSecondKey();
}
}
}
package com.kane.mr;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class SortMain {
public static void main(String[] args) throws Exception{
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "Sort");
job.setJarByClass(SortMain.class);
job.setInputFormatClass(KeyValueTextInputFormat.class);//设定输入的格式是key(中间\t隔开)value
job.setMapperClass(SortMapper.class);
//job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(SortReducer.class);
job.setMapOutputKeyClass(IntPair.class);
job.setMapOutputValueClass(IntWritable.class);
job.setSortComparatorClass(TextIntCompartor.class);
job.setGroupingComparatorClass(TextComparator.class);//以key 进行group by
job.setPartitionerClass(PartionTest.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));//输入參数,相应hadoop jar 相应类执行时在后面加的第一个參数
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//输出參数
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
导出jar包放到hadoop下,然后讲sort.txt放入到hdfs中,然后用hadoop jar KaneTest/sort.jar com.kane.mr.SoetMain /kane/sort.txt /kane/output命令运行
MapReduce实现排序功能,布布扣,bubuko.com
原文:http://www.cnblogs.com/zfyouxi/p/3790782.html