The first line contains an integer n (1 ≤ n ≤ 400) — the amount of the coins‘ face values. The second line contains n integers ai (1 ≤ ai ≤ 109), describing the face values. It is guaranteed that a1 > a2 > ... > an and an = 1.
If greedy algorithm collects any sum in an optimal way, output -1. Otherwise output the smallest sum that greedy algorithm collects in a non-optimal way.
5
25 10 5 2 1
-1
3
4 3 1
6
参考论文《A polynomial-time algorithm for the change-making problem》
设找零钱的最小表示为M(x),贪心表示为G(x),最小不满足M(x)=G(x)的值为w。
如题中input2,M(6)={0,2,0}, G(6)={1,0,2}。
设M(w)第一个非0元素在位置i,最后一个非0元素在位置j
有这么一个结论:
M(w)和G(c[i-1]-1)从1到j-1位都相等,M[j]=G[j]+1。
于是可以通过枚举i,j求出w的值。
1 #include <map> 2 #include <set> 3 #include <cmath> 4 #include <queue> 5 #include <stack> 6 #include <cstdio> 7 #include <string> 8 #include <vector> 9 #include <cstring> 10 #include <iostream> 11 #include <algorithm> 12 #define ll long long 13 #define pii pair<int, int> 14 #define mp(x,y) make_pair(x,y) 15 using namespace std; 16 const int inf = 0x7fffffff; 17 const double eps = 1e-12; 18 const int mod = 1e9+7; 19 const int maxn = 300005; 20 using namespace std; 21 int c[401]; 22 int main() { 23 int n; 24 cin>>n; 25 for (int i=0; i<n; i++) 26 cin>>c[i]; 27 int ans=-1; 28 for (int i=1; i<n; i++) { 29 for (int j=i; j<n; j++) { 30 //calculate G(c[i-1]-1) and w 31 int p=c[i-1]-1, cnt=1, w=c[j]; 32 for (int k=i; k<=j; k++) { 33 cnt+=p/c[k]; 34 w+=p/c[k]*c[k]; 35 p%=c[k]; 36 } 37 p=w; 38 //judge whether M(w)<G(w) 39 for (int k=0; k<n; k++) { 40 cnt-=p/c[k]; 41 p%=c[k]; 42 } 43 if (cnt<0&&(ans==-1||w<ans)) 44 ans=w; 45 } 46 } 47 cout << ans << endl; 48 return 0; 49 }
CF10E Greedy Change 判断硬币系统是否能用贪心策略,布布扣,bubuko.com
CF10E Greedy Change 判断硬币系统是否能用贪心策略
原文:http://www.cnblogs.com/mandora/p/3791325.html