Given two words word1 and word2, find the minimum number of steps required to convert
word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
思路:
上述问题就是动态规划中典型的字符串编辑距离问题.我们先来看下状态的定义吧.
现假设原串为S,目标串为T,定义如下状态:
那么,我们可以得到如下的状态的转移方程:
下面解释下状态转移方程是怎么推导过程.
① 对于S[i]与T[0....j]来说,如果S[i]不在T[0....j]中,就表示S[i]被删除了,所以dp[i+1][j+1] = dp[i][j+1] + 1.
②如果S[i]存在T[0....j]中,那么,i可选的位置为0到j,剩下的k+1~j都可以看成是插入字符,所以可
得状态转移方程dp[i+1][j+1] = min(dp[i+1][k+1]+j-k),k∈[0,j].由于k=j时,情况较特殊,所以单独讨论k=j.
当k=j时,表示S[i]最终出现在T[j]这个位置,而这情况只有S[i] =T[j] 或者 S[i] != T[j]两种情况,如果
S[i]!=T[j],则表示此处进行了一次替换,所以有状态转移dp[i+1][j+1]=dp[i][j]+(S[i]!=T[j]).
而剩下的状态为dp[i+1][j+1] = min(dp[i+1][k+1]+j-k),k∈[0,j)
现在面临的关键就是怎么将此状态做到常数时间O(1).
证明:
令f(k) = dp[i+1][k+1] + j - k ,k∈[0,j),我们在k = i 处将此函数分段讨论.
①
②
当i<k<j时,我们容易得知dp[i+1][k+1]+j-k是个常数,所以当i<k<j时,f(k)=dp[i+1][i+1+1]+j-i-1.
而dp[i+1][i+1]+1=dp[i+1][i+2],即dp[i+1][i+1]+j-i=dp[i+1][i+2]+j-i-1,由此可知f(i)=f(i+1),
从而我们可以得到f(k)函数在其定义域上非递增的,所以min(f(k)) =dp[i+1][j]+1,所以有状态
dp[i+1][j+1] = dp[i+1][j] + 1.
下面是解题代码:
class Solution { public: int minDistance(string word1, string word2) { int m = word1.size() , n = word2.size() ; int dp[m+1][n+1]; for (int i = 0 ; i <= m ; ++i) dp[i][0] = i ; for (int j = 0 ; j <= n ; ++j) dp[0][j] = j ; for (int i = 0 ; i < m ; ++i) for (int j = 0 ; j < n ; ++j) dp[i+1][j+1] = min(dp[i][j+1]+1,min(dp[i+1][j]+1,dp[i][j] + ( word1[i] != word2[j] ) ) ); return dp[m][n]; } };
LeetCode:Edit Distance,布布扣,bubuko.com
原文:http://blog.csdn.net/dream_you_to_life/article/details/31533783