首页 > 其他 > 详细

BZOJ 3239 Discrete Logging(BSGS)

时间:2017-07-17 14:56:02      阅读:324      评论:0      收藏:0      [点我收藏+]

 

【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=3239

 

【题目大意】

  计算满足 Y^x ≡ Z ( mod P) 的最小非负整数

 

【题解】

  BSGS裸题。

 

【代码】

#include <cstdio>
#include <cmath>
#include <map>
#include <algorithm>
#include <tr1/unordered_map>
using namespace std::tr1;
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
int phi(int n){
    int t=1,i;
    for(i=2;i*i<=n;i++)if(n%i==0)for(n/=i,t*=i-1;n%i==0;n/=i,t*=i);
    if(n>1)t*=n-1;
    return t;
}
int pow(ll a,int b,int m){ll t=1;for(;b;b>>=1,a=a*a%m)if(b&1)t=t*a%m;return t;}
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int exgcd(int a,int b,int&x,int&y){
    if(!b)return x=1,y=0,a;
    int d=exgcd(b,a%b,x,y),t=x;
    return x=y,y=t-a/b*y,d;
}
int bsgs(int a,int r,int m){
    if(r>=m)return -1;
    int i,g,x,c=0,at=int(2+sqrt(m));
    for(i=0,x=1%m;i<50;i++,x=ll(x)*a%m)if(x==r)return i;
    for(g=x=1;__gcd(int(ll(x)*a%m),m)!=g;c++)g=__gcd(x=ll(x)*a%m,m);
    if(r%g)return -1;
    if(x==r)return c;
    unordered_map<int,int>u;
    g=phi(m/g),u[x]=0;g=pow(a,g-at%g,m);
    for(i=1;i<at;i++){
        u.insert(P(x=ll(x)*a%m,i));
        if(x==r)return c+i;
    }
    for(i=1;i<at;i++){
        unordered_map<int,int>::iterator t=u.find(r=ll(r)*g%m);
        if(t!=u.end())return c+i*at+t->second;
    }return -1;
}
void solve(int y,int z,int p){
    y%=p; z%=p; 
    int t=bsgs(y,z,p);
    if(t==-1){puts("no solution");return;}
    else printf("%d\n",t);
}
int main(){
    int a,b,c;
    while(~scanf("%d%d%d",&a,&b,&c))solve(b,c,a);
    return 0;
}

BZOJ 3239 Discrete Logging(BSGS)

原文:http://www.cnblogs.com/forever97/p/bzoj3239.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!