首页 > 其他 > 详细

Redis—数据结构之list

时间:2017-07-18 22:42:30      阅读:270      评论:0      收藏:0      [点我收藏+]

Redis的列表对象底层所使用的数据结构其中之一就是list。

list

Redis的list是一个双端链表,其由3部分构成:链表节点、链表迭代器、链表。这一设计思想和STL的list是一样的,STL的list也是由这三部分组成。需要特别说明的是Redis用C语言实现了list的迭代器,比较巧妙,下面就来分析list源码。

list节点

节点的值为void*类型,从而可以保存不同类型的值,甚至是另一种类型的对象

// 双端链表的节点
typedef struct listNode {
    struct listNode *prev; // 指向上一个节点
    struct listNode *next; // 指向下一个节点
    void *value; // 指向节点的值, void*类型,使得节点可以保存不同类型的值
} listNode;

list迭代器

c语言实现c++中的迭代器;双端链表的迭代器,方便了遍历链表的操作;根据direction,可设置为前向/反向迭代器

typedef struct listIter {
    listNode *next;    // 指向迭代器方向上下一个链表结点
    int direction; // AL_START_HEAD=0:从头部往尾部方向移动;AL_START_TAIL=1:往尾部往头部方向移动
} listIter;

其中direction的取值有:

/* Directions for iterators */
// 迭代器方向的宏定义
#define AL_START_HEAD 0
#define AL_START_TAIL 1

list

与一般设计类似,list中有指向头尾节点的指针,以及链表节点数量的计数。不同的是,由于链表节点为void*类型,被设计为可以存储不同类型的数据,甚至是另一种类型的对象,所以添加了与节点相关的3个函数,作用分别是复制、释放、比较节点的值。

// 双端链表
typedef struct list {
    listNode *head; // 指向链表头节点
    listNode *tail; // 指向链表尾节点
    void *(*dup)(void *ptr); // 复制链表节点所保存的值
    void (*free)(void *ptr); // 释放链表节点所保存的值
    int (*match)(void *ptr, void *key); // 节点值比较函数
    unsigned long len; // 链表的节点数目
} list;

 

list的操作函数

Redis用宏定义实现了一些复杂度为O(1)的链表操作,以提高list操作的效率。

/* Functions implemented as macros */
// 通过宏来实现一些O(1)时间复杂度的函数
#define listLength(l) ((l)->len)
#define listFirst(l) ((l)->head)
#define listLast(l) ((l)->tail)
#define listPrevNode(n) ((n)->prev)
#define listNextNode(n) ((n)->next)
#define listNodeValue(n) ((n)->value)

#define listSetDupMethod(l,m) ((l)->dup = (m))
#define listSetFreeMethod(l,m) ((l)->free = (m))
#define listSetMatchMethod(l,m) ((l)->match = (m))

#define listGetDupMethod(l) ((l)->dup)
#define listGetFree(l) ((l)->free)
#define listGetMatchMethod(l) ((l)->match)

 

list的源码比较好理解,本人对其已经做了详细的注释,就不仔细介绍了,下面附上源码及注释。list相关的文件有两个:adlist.h, adlist.c

adlist.h

技术分享
#ifndef __ADLIST_H__
#define __ADLIST_H__

/* Node, List, and Iterator are the only data structures used currently. */

// redis的链表为双端链表
// 节点的值为void*类型,从而可以保存不同类型的值
// 结合dup,free,match函数实现链表的多态

// 双端链表的节点
typedef struct listNode {
    struct listNode *prev; // 指向上一个节点
    struct listNode *next; // 指向下一个节点
    void *value; // 指向节点的值, void*类型,使得节点可以保存不同类型的值
} listNode;

// c语言实现c++中的迭代器!!!
// 双端链表的迭代器,方便了遍历链表的操作
// 根据direction,可设置为前向/反向迭代器
typedef struct listIter {
    listNode *next;    // 指向迭代器方向上下一个链表结点
    int direction; // AL_START_HEAD=0:从头部往尾部方向移动;AL_START_TAIL=1:往尾部往头部方向移动
} listIter;

// 双端链表
typedef struct list {
    listNode *head; // 指向链表头节点
    listNode *tail; // 指向链表尾节点
    void *(*dup)(void *ptr); // 复制链表节点所保存的值
    void (*free)(void *ptr); // 释放链表节点所保存的值
    int (*match)(void *ptr, void *key); // 节点值比较函数
    unsigned long len; // 链表的节点数目
} list;



/* Functions implemented as macros */
// 通过宏来实现一些O(1)时间复杂度的函数
#define listLength(l) ((l)->len)
#define listFirst(l) ((l)->head)
#define listLast(l) ((l)->tail)
#define listPrevNode(n) ((n)->prev)
#define listNextNode(n) ((n)->next)
#define listNodeValue(n) ((n)->value)

#define listSetDupMethod(l,m) ((l)->dup = (m))
#define listSetFreeMethod(l,m) ((l)->free = (m))
#define listSetMatchMethod(l,m) ((l)->match = (m))

#define listGetDupMethod(l) ((l)->dup)
#define listGetFree(l) ((l)->free)
#define listGetMatchMethod(l) ((l)->match)

/* Prototypes */
// list数据结构相关的函数
// 具体含义见adlist.c
list *listCreate(void);
void listRelease(list *list);
list *listAddNodeHead(list *list, void *value);
list *listAddNodeTail(list *list, void *value);
list *listInsertNode(list *list, listNode *old_node, void *value, int after);
void listDelNode(list *list, listNode *node);
listIter *listGetIterator(list *list, int direction);
listNode *listNext(listIter *iter);
void listReleaseIterator(listIter *iter);
list *listDup(list *orig);
listNode *listSearchKey(list *list, void *key);
listNode *listIndex(list *list, long index);
void listRewind(list *list, listIter *li);
void listRewindTail(list *list, listIter *li);
void listRotate(list *list);

/* Directions for iterators */
// 迭代器方向的宏定义
#define AL_START_HEAD 0
#define AL_START_TAIL 1

#endif /* __ADLIST_H__ */
View Code

adlist.c

技术分享
/* adlist.c - A generic doubly linked list implementation
 */


#include <stdlib.h>
#include "adlist.h"
#include "zmalloc.h"

/* Create a new list. The created list can be freed with
 * AlFreeList(), but private value of every node need to be freed
 * by the user before to call AlFreeList().
 *
 * On error, NULL is returned. Otherwise the pointer to the new list. */
 
// 创建一个链表
// 返回值:list/NULL
list *listCreate(void)
{
    struct list *list;

    if ((list = zmalloc(sizeof(*list))) == NULL) // 为链表分配内存
        return NULL;
    // 初始化链表结构体的成员
    list->head = list->tail = NULL;
    list->len = 0;
    list->dup = NULL;
    list->free = NULL;
    list->match = NULL;
    return list; // 返回为新链表分配的内存的起始地址
}

/* Free the whole list.
 *
 * This function can‘t fail. */
 
// 释放链表及链表节点
void listRelease(list *list)
{
    unsigned long len;
    listNode *current, *next;

    current = list->head;
    len = list->len;
    while(len--) {
        next = current->next;
        if (list->free) list->free(current->value); // 释放链表节点的值
        zfree(current); // 释放链表节点
        current = next;
    }
    zfree(list); // 释放链表
}

/* Add a new node to the list, to head, containing the specified ‘value‘
 * pointer as value.
 *
 * On error, NULL is returned and no operation is performed (i.e. the
 * list remains unaltered).
 * On success the ‘list‘ pointer you pass to the function is returned. */
 
// 从双端链表的头部插入新节点
// 返回值:list/NULL
list *listAddNodeHead(list *list, void *value)
{
    listNode *node;

    if ((node = zmalloc(sizeof(*node))) == NULL)
        return NULL;
    node->value = value;
    if (list->len == 0) { // 原链表为一空链表
        list->head = list->tail = node;
        node->prev = node->next = NULL;
    } else {
        // 插入到双端链表的头结点之前
        node->prev = NULL;
        node->next = list->head;
        list->head->prev = node;
        list->head = node;
    }
    list->len++;
    return list;
}

/* Add a new node to the list, to tail, containing the specified ‘value‘
 * pointer as value.
 *
 * On error, NULL is returned and no operation is performed (i.e. the
 * list remains unaltered).
 * On success the ‘list‘ pointer you pass to the function is returned. */

// 从双端链表的尾部插入新节点
// 返回值:list/NULL 
list *listAddNodeTail(list *list, void *value)
{
    listNode *node;

    if ((node = zmalloc(sizeof(*node))) == NULL)
        return NULL;
    node->value = value;
    if (list->len == 0) {
        list->head = list->tail = node;
        node->prev = node->next = NULL;
    } else {
        node->prev = list->tail;
        node->next = NULL;
        list->tail->next = node;
        list->tail = node;
    }
    list->len++;
    return list;
}

// 在链表list的节点old_node的前或后插入新节点
// after为0,则在old_node之前插入;否则,在old_node之后插入
// 返回值:list/NULL
list *listInsertNode(list *list, listNode *old_node, void *value, int after) {
    listNode *node;

    if ((node = zmalloc(sizeof(*node))) == NULL)
        return NULL;
    node->value = value;
    if (after) { // old_node之后插入
        node->prev = old_node;
        node->next = old_node->next;
        if (list->tail == old_node) {
            list->tail = node;
        }
    } else { // old_node之前插入
        node->next = old_node;
        node->prev = old_node->prev;
        if (list->head == old_node) {
            list->head = node;
        }
    }
    if (node->prev != NULL) {
        node->prev->next = node;
    }
    if (node->next != NULL) {
        node->next->prev = node;
    }
    list->len++;
    return list;
}

/* Remove the specified node from the specified list.
 * It‘s up to the caller to free the private value of the node.
 *
 * This function can‘t fail. */

// 删除链表list中节点node
void listDelNode(list *list, listNode *node)
{
    if (node->prev)
        node->prev->next = node->next;
    else
        list->head = node->next;
    if (node->next)
        node->next->prev = node->prev;
    else
        list->tail = node->prev;
    if (list->free) list->free(node->value);
    zfree(node);
    list->len--;
}

/* Returns a list iterator ‘iter‘. After the initialization every
 * call to listNext() will return the next element of the list.
 *
 * This function can‘t fail. */
 
 // 返回链表的迭代器
 // 返回值:list/NULL
listIter *listGetIterator(list *list, int direction)
{
    listIter *iter;

    if ((iter = zmalloc(sizeof(*iter))) == NULL) return NULL;
    if (direction == AL_START_HEAD)
        iter->next = list->head; // 设置为前向迭代器
    else
        iter->next = list->tail; // 设置为反向迭代器
    iter->direction = direction;
    return iter;
}

/* Release the iterator memory */

// 释放迭代器的内存
void listReleaseIterator(listIter *iter) {
    zfree(iter);
}

/* Create an iterator in the list private iterator structure */

// 回绕迭代器到链表头部
void listRewind(list *list, listIter *li) {
    li->next = list->head;
    li->direction = AL_START_HEAD;
}

// 回绕迭代器到链表尾部
void listRewindTail(list *list, listIter *li) {
    li->next = list->tail;
    li->direction = AL_START_TAIL;
}

/* Return the next element of an iterator.
 * It‘s valid to remove the currently returned element using
 * listDelNode(), but not to remove other elements.
 *
 * The function returns a pointer to the next element of the list,
 * or NULL if there are no more elements, so the classical usage patter
 * is:
 *
 * iter = listGetIterator(list,<direction>);
 * while ((node = listNext(iter)) != NULL) {
 *     doSomethingWith(listNodeValue(node));
 * }
 *
 * */
 
 // 返回迭代器所指向的元素,并将迭代器往其方向上移动一步
 // 返回值:指向当前节点的指针/NULL
listNode *listNext(listIter *iter)
{
    listNode *current = iter->next;

    if (current != NULL) {
        if (iter->direction == AL_START_HEAD)
            iter->next = current->next;
        else
            iter->next = current->prev;
    }
    return current;
}

/* Duplicate the whole list. On out of memory NULL is returned.
 * On success a copy of the original list is returned.
 *
 * The ‘Dup‘ method set with listSetDupMethod() function is used
 * to copy the node value. Otherwise the same pointer value of
 * the original node is used as value of the copied node.
 *
 * The original list both on success or error is never modified. */
 
 // 复制输入链表
 // list*/NULL
list *listDup(list *orig)
{
    list *copy;
    listIter iter;
    listNode *node;

    if ((copy = listCreate()) == NULL) // 创建新链表
        return NULL;
    copy->dup = orig->dup;
    copy->free = orig->free;
    copy->match = orig->match;
    listRewind(orig, &iter); // 回绕迭代器到链表头部
    while((node = listNext(&iter)) != NULL) { // 遍历原链表,顺序取出节点
        void *value;

        if (copy->dup) {
            value = copy->dup(node->value); // 通过list.dup函数复制节点值
            if (value == NULL) {
                listRelease(copy); // 出错释放链表
                return NULL;
            }
        } else
            value = node->value;
        if (listAddNodeTail(copy, value) == NULL) { // 从新链表尾部插入值
            listRelease(copy); // 出错释放链表
            return NULL;
        }
    }
    return copy;
}

/* Search the list for a node matching a given key.
 * The match is performed using the ‘match‘ method
 * set with listSetMatchMethod(). If no ‘match‘ method
 * is set, the ‘value‘ pointer of every node is directly
 * compared with the ‘key‘ pointer.
 *
 * On success the first matching node pointer is returned
 * (search starts from head). If no matching node exists
 * NULL is returned. */
 
 // 返回链表中节点值与key相匹配的节点
 // listNode*/NULL
listNode *listSearchKey(list *list, void *key)
{
    listIter iter;
    listNode *node;

    listRewind(list, &iter);
    while((node = listNext(&iter)) != NULL) {
        if (list->match) {
            if (list->match(node->value, key)) { // 调用list.match函数对节点值进行比较
                return node;
            }
        } else {
            if (key == node->value) {
                return node;
            }
        }
    }
    return NULL;
}

/* Return the element at the specified zero-based index
 * where 0 is the head, 1 is the element next to head
 * and so on. Negative integers are used in order to count
 * from the tail, -1 is the last element, -2 the penultimate
 * and so on. If the index is out of range NULL is returned. */
 
 // 返回给定索引位置的节点
 // index=0,返回头结点
 // index < 0,则从尾部开始返回,index = -1,返回尾部节点
listNode *listIndex(list *list, long index) {
    listNode *n;

    if (index < 0) {
        index = (-index)-1;
        n = list->tail;
        while(index-- && n) n = n->prev;
    } else {
        n = list->head;
        while(index-- && n) n = n->next;
    }
    return n;
}

/* Rotate the list removing the tail node and inserting it to the head. */

// 将尾部节点弹出,插入到链表头节点之前,成为新的表头节点
void listRotate(list *list) {
    listNode *tail = list->tail;

    if (listLength(list) <= 1) return;

    /* Detach current tail */
    list->tail = tail->prev;
    list->tail->next = NULL;
    /* Move it as head */
    list->head->prev = tail;
    tail->prev = NULL;
    tail->next = list->head;
    list->head = tail;
}
View Code

 

(全文完)

附:Redis系列:http://www.cnblogs.com/zxiner/p/7197415.html

 

Redis—数据结构之list

原文:http://www.cnblogs.com/zxiner/p/7203094.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!