Spark的Cluster Manager可以有几种部署模式:
在向集群提交计算任务后,系统的运算模型就是Driver Program定义的SparkContext向APP Master提交,有APP Master进行计算资源的调度并最终完成计算。具体阐述可以阅读《Spark:大数据的电花火石! 》。
那么Standalone模式下,Client,Master和Worker是如何进行通信,注册并开启服务的呢?
模块间通信有很多成熟的实现,现在很多成熟的Framework已经早已经让我们摆脱原始的Socket编程了。简单归类,可以归纳为基于消息的传递和基于资源共享的同步机制。
基于消息的传递的机制应用比较广泛的有Message Queue。Message Queue, 是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。其中较为成熟的MQ产品有IBM WEBSPHERE MQ和RabbitMQ(AMQP的开源实现,现在由Pivotal维护)。
还有不得不提的是ZeroMQ,一个致力于进入Linux内核的基于Socket的编程框架。官方的说法: “ZeroMQ是一个简单好用的传输层,像框架一样的一个socket library,它使得Socket编程更加简单、简洁和性能更高。是一个消息处理队列库,可在多个线程、内核和主机盒之间弹性伸缩。ZMQ的明确目标是“成为标准网络协议栈的一部分,之后进入Linux内核”。
Spark在很多模块之间的通信选择是Scala原生支持的akka,一个用 Scala 编写的库,用于简化编写容错的、高可伸缩性的 Java 和 Scala 的 Actor 模型应用。akka有以下5个特性:
在Spark中的Client,Master和Worker实际上都是一个actor,拿Client来说:
import akka.actor._ import akka.pattern.ask import akka.remote.{AssociationErrorEvent, DisassociatedEvent, RemotingLifecycleEvent} private class ClientActor(driverArgs: ClientArguments, conf: SparkConf) extends Actor with Logging { var masterActor: ActorSelection = _ val timeout = AkkaUtils.askTimeout(conf) override def preStart() = { masterActor = context.actorSelection(Master.toAkkaUrl(driverArgs.master)) context.system.eventStream.subscribe(self, classOf[RemotingLifecycleEvent]) println(s"Sending ${driverArgs.cmd} command to ${driverArgs.master}") driverArgs.cmd match { case "launch" => ... masterActor ! RequestSubmitDriver(driverDescription) case "kill" => val driverId = driverArgs.driverId val killFuture = masterActor ! RequestKillDriver(driverId) } } override def receive = { case SubmitDriverResponse(success, driverId, message) => println(message) if (success) pollAndReportStatus(driverId.get) else System.exit(-1) case KillDriverResponse(driverId, success, message) => println(message) if (success) pollAndReportStatus(driverId) else System.exit(-1) case DisassociatedEvent(_, remoteAddress, _) => println(s"Error connecting to master ${driverArgs.master} ($remoteAddress), exiting.") System.exit(-1) case AssociationErrorEvent(cause, _, remoteAddress, _) => println(s"Error connecting to master ${driverArgs.master} ($remoteAddress), exiting.") println(s"Cause was: $cause") System.exit(-1) } } /** * Executable utility for starting and terminating drivers inside of a standalone cluster. */ object Client { def main(args: Array[String]) { println("WARNING: This client is deprecated and will be removed in a future version of Spark.") println("Use ./bin/spark-submit with \"--master spark://host:port\"") val conf = new SparkConf() val driverArgs = new ClientArguments(args) if (!driverArgs.logLevel.isGreaterOrEqual(Level.WARN)) { conf.set("spark.akka.logLifecycleEvents", "true") } conf.set("spark.akka.askTimeout", "10") conf.set("akka.loglevel", driverArgs.logLevel.toString.replace("WARN", "WARNING")) Logger.getRootLogger.setLevel(driverArgs.logLevel) // TODO: See if we can initialize akka so return messages are sent back using the same TCP // flow. Else, this (sadly) requires the DriverClient be routable from the Master. val (actorSystem, _) = AkkaUtils.createActorSystem( "driverClient", Utils.localHostName(), 0, conf, new SecurityManager(conf)) actorSystem.actorOf(Props(classOf[ClientActor], driverArgs, conf)) actorSystem.awaitTermination() } }
其中第19行的含义就是向Master提交Driver的请求,
masterActor ! RequestSubmitDriver(driverDescription)
而Master将在receive里处理这个请求。当然了27行到44行的是处理Client Actor收到的消息。
可以看出,通过akka,可以非常简单高效的处理模块间的通信,这可以说是Spark IPC的一大特色。
源码位置:spark-1.0.0\core\src\main\scala\org\apache\spark\deploy。主要涉及的类:Client.scala, Master.scala和Worker.scala。这三大模块之间的通信框架如下图。
Standalone模式下存在的角色:
Client:负责提交作业到Master。
Master:接收Client提交的作业,管理Worker,并命令Worker启动Driver和Executor。
Worker:负责管理本节点的资源,定期向Master汇报心跳,接收Master的命令,比如启动Driver和Executor。
实际上,Master和Worker要处理的消息要比这多得多,本图只是反映了集群启动和向集群提交运算时候的主要消息处理。
接下来将分别走读这三大角色的源码。
Client启动:
object Client { def main(args: Array[String]) { println("WARNING: This client is deprecated and will be removed in a future version of Spark.") println("Use ./bin/spark-submit with \"--master spark://host:port\"") val conf = new SparkConf() val driverArgs = new ClientArguments(args) if (!driverArgs.logLevel.isGreaterOrEqual(Level.WARN)) { conf.set("spark.akka.logLifecycleEvents", "true") } conf.set("spark.akka.askTimeout", "10") conf.set("akka.loglevel", driverArgs.logLevel.toString.replace("WARN", "WARNING")) Logger.getRootLogger.setLevel(driverArgs.logLevel) // TODO: See if we can initialize akka so return messages are sent back using the same TCP // flow. Else, this (sadly) requires the DriverClient be routable from the Master. val (actorSystem, _) = AkkaUtils.createActorSystem( "driverClient", Utils.localHostName(), 0, conf, new SecurityManager(conf)) // 使用ClientActor初始化actorSystem actorSystem.actorOf(Props(classOf[ClientActor], driverArgs, conf)) //启动并等待actorSystem的结束 actorSystem.awaitTermination() } }
从行21可以看出,核心实现是由ClientActor实现的。Client的Actor是akka.Actor的一个扩展。对于Actor,从它对recevie的override就可以看出它需要处理的消息。
override def receive = { case SubmitDriverResponse(success, driverId, message) => println(message) if (success) pollAndReportStatus(driverId.get) else System.exit(-1) case KillDriverResponse(driverId, success, message) => println(message) if (success) pollAndReportStatus(driverId) else System.exit(-1) case DisassociatedEvent(_, remoteAddress, _) => println(s"Error connecting to master ${driverArgs.master} ($remoteAddress), exiting.") System.exit(-1) case AssociationErrorEvent(cause, _, remoteAddress, _) => println(s"Error connecting to master ${driverArgs.master} ($remoteAddress), exiting.") println(s"Cause was: $cause") System.exit(-1) }
源码分析详见注释。
override def receive = { case ElectedLeader => { // 被选为Master,首先判断是否该Master原来为active,如果是那么进行Recovery。 } case CompleteRecovery => completeRecovery() // 删除没有响应的worker和app,并且将所有没有worker的Driver分配worker case RevokedLeadership => { // Master将关闭。 } case RegisterWorker(id, workerHost, workerPort, cores, memory, workerUiPort, publicAddress) => { // 如果该Master不是active,不做任何操作,返回 // 如果注册过该worker id,向sender返回错误 sender ! RegisterWorkerFailed("Duplicate worker ID") // 注册worker,如果worker注册成功则返回成功的消息并且进行调度 sender ! RegisteredWorker(masterUrl, masterWebUiUrl) schedule() // 如果worker注册失败,发送消息到sender sender ! RegisterWorkerFailed("Attempted to re-register worker at same address: " + workerAddress) } case RequestSubmitDriver(description) => { // 如果master不是active,返回错误 sender ! SubmitDriverResponse(false, None, msg) // 否则创建driver,返回成功的消息 sender ! SubmitDriverResponse(true, Some(driver.id), s"Driver successfully submitted as ${driver.id}") } } case RequestKillDriver(driverId) => { if (state != RecoveryState.ALIVE) { // 如果master不是active,返回错误 val msg = s"Can only kill drivers in ALIVE state. Current state: $state." sender ! KillDriverResponse(driverId, success = false, msg) } else { logInfo("Asked to kill driver " + driverId) val driver = drivers.find(_.id == driverId) driver match { case Some(d) => //如果driver仍然在等待队列,从等待队列删除并且更新driver状态为KILLED } else { // 通知worker kill driver id的driver。结果会由workder发消息给master ! DriverStateChanged d.worker.foreach { w => w.actor ! KillDriver(driverId) } } // 注意,此时driver不一定被kill,master只是通知了worker去kill driver。 sender ! KillDriverResponse(driverId, success = true, msg) case None => // driver已经被kill,直接返回结果 sender ! KillDriverResponse(driverId, success = false, msg) } } } case RequestDriverStatus(driverId) => { // 查找请求的driver,如果找到则返回driver的状态 (drivers ++ completedDrivers).find(_.id == driverId) match { case Some(driver) => sender ! DriverStatusResponse(found = true, Some(driver.state), driver.worker.map(_.id), driver.worker.map(_.hostPort), driver.exception) case None => sender ! DriverStatusResponse(found = false, None, None, None, None) } } case RegisterApplication(description) => { //如果是standby,那么忽略这个消息 //否则注册application;返回结果并且开始调度 } case ExecutorStateChanged(appId, execId, state, message, exitStatus) => { // 通过idToApp获得app,然后通过app获得executors,从而通过execId获得executor val execOption = idToApp.get(appId).flatMap(app => app.executors.get(execId)) execOption match { case Some(exec) => { exec.state = state exec.application.driver ! ExecutorUpdated(execId, state, message, exitStatus) if (ExecutorState.isFinished(state)) { val appInfo = idToApp(appId) // Remove this executor from the worker and app logInfo("Removing executor " + exec.fullId + " because it is " + state) appInfo.removeExecutor(exec) exec.worker.removeExecutor(exec) } } } case DriverStateChanged(driverId, state, exception) => { // 如果Driver的state为ERROR | FINISHED | KILLED | FAILED, 删除它。 } case Heartbeat(workerId) => { // 更新worker的时间戳 workerInfo.lastHeartbeat = System.currentTimeMillis() } case MasterChangeAcknowledged(appId) => { // 将appId的app的状态置为WAITING,为切换Master做准备。 } case WorkerSchedulerStateResponse(workerId, executors, driverIds) => { // 通过workerId查找到worker,那么worker的state置为ALIVE, // 并且查找状态为idDefined的executors,并且将这些executors都加入到app中, // 然后保存这些app到worker中。可以理解为Worker在Master端的Recovery idToWorker.get(workerId) match { case Some(worker) => logInfo("Worker has been re-registered: " + workerId) worker.state = WorkerState.ALIVE val validExecutors = executors.filter(exec => idToApp.get(exec.appId).isDefined) for (exec <- validExecutors) { val app = idToApp.get(exec.appId).get val execInfo = app.addExecutor(worker, exec.cores, Some(exec.execId)) worker.addExecutor(execInfo) execInfo.copyState(exec) } // 将所有的driver设置为RUNNING然后加入到worker中。 for (driverId <- driverIds) { drivers.find(_.id == driverId).foreach { driver => driver.worker = Some(worker) driver.state = DriverState.RUNNING worker.drivers(driverId) = driver } } } } case DisassociatedEvent(_, address, _) => { // 这个请求是Worker或者是App发送的。删除address对应的Worker和App // 如果Recovery可以结束,那么结束Recovery } case RequestMasterState => { //向sender返回master的状态 sender ! MasterStateResponse(host, port, workers.toArray, apps.toArray, completedApps.toArray, drivers.toArray, completedDrivers.toArray, state) } case CheckForWorkerTimeOut => { //删除超时的Worker } case RequestWebUIPort => { //向sender返回web ui的端口号 sender ! WebUIPortResponse(webUi.boundPort) } }
通过对Client和Master的源码解析,相信你也知道如何去分析Worker是如何和Master进行通信的了,没错,答案就在下面:
override def receive
Spark源码1.0.0。
Spark技术内幕:Client,Master和Worker 通信源码解析,布布扣,bubuko.com
Spark技术内幕:Client,Master和Worker 通信源码解析
原文:http://blog.csdn.net/anzhsoft/article/details/30802603