/** 题目:poj3422 拆点法+最小费用最大流 链接:http://poj.org/problem?id=3422 题意:给定n*n的矩阵,含有元素值,初始sum=0.每次从最左上角开始出发,每次向右或者向下一格。终点是右下角。 每经过一个格子,获取它的值,并把该格子的值变成0.问经过k次从左上角到右下角。能得到的数值和最大多少。 思路:我觉得本题元素值全是非负数。要不然不可以过。很多网上的博客代码在有负数情况下过不了。 拆点法+最小费用最大流 建图: 每一个格子x,拆成x,xi, x向xi连两条边,其一:x->xi,cap=1,cost=-wx;其二:x->xi,cap=k-1,cost=0;表示x这个格子可以经过k次, 第一次获得值为wx,之后经过它只能获得0. 左上角格子x, s->x,cap=k,cost=0; 右下角格子x, xi->t,cap=k,coste=0; 如果x的右边的格子或者下面的格子是y, xi->y,cap=k,cost=0; */ #include<iostream> #include<cstring> #include<vector> #include<map> #include<cstdio> #include<sstream> #include<algorithm> #include<queue> using namespace std; typedef long long LL; const int INF = 0x3f3f3f3f; const int N = 5500; struct Edge{ int from, to, cap, flow, cost; Edge(int u,int v,int c,int f,int w):from(u),to(v),cap(c),flow(f),cost(w){} }; struct MCMF{ int n, m; vector<Edge> edges; vector<int> G[N]; int inq[N]; int d[N]; int p[N]; int a[N]; void init(int n){ this->n = n; for(int i = 0; i <= n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from,int to,int cap,long long cost){ edges.push_back(Edge(from,to,cap,0,cost)); edges.push_back(Edge(to,from,0,0,-cost)); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BellmanFord(int s,int t,int &flow,long long &cost){ for(int i = 0; i <= n; i++) d[i] = INF; memset(inq, 0, sizeof inq); d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF; queue<int> Q; Q.push(s); while(!Q.empty()){ int u = Q.front(); Q.pop(); inq[u] = 0; for(int i = 0; i < G[u].size(); i++){ Edge& e = edges[G[u][i]]; if(e.cap>e.flow&&d[e.to]>d[u]+e.cost){ d[e.to] = d[u]+e.cost; p[e.to] = G[u][i]; a[e.to] = min(a[u],e.cap-e.flow); if(!inq[e.to]) {Q.push(e.to); inq[e.to] = 1;} } } } if(d[t]==INF) return false; flow += a[t]; cost += (long long)d[t]*(long long)a[t]; for(int u = t; u!=s; u = edges[p[u]].from){ edges[p[u]].flow+=a[t]; edges[p[u]^1].flow-=a[t]; } return true; } int MincostMaxflow(int s,int t,long long &cost){ int flow = 0; cost = 0; while(BellmanFord(s,t,flow,cost)); return flow; } }; int main() { int n, k; while(scanf("%d%d",&n,&k)==2) { int w, s = 0, t = n*n+1; MCMF mcmf; mcmf.init(t*2); mcmf.AddEdge(s,1,k,0); for(int i = 1; i <= n; i++){ for(int j = 1;j <= n; j++){ scanf("%d",&w); int x = (i-1)*n+j, y = x+t; mcmf.AddEdge(x,y,1,-w); mcmf.AddEdge(x,y,k-1,0); if(i==n&&j==n){ mcmf.AddEdge(y,t,k,0); } if(j+1<=n){ int m = (i-1)*n+j+1; mcmf.AddEdge(y,m,k,0); } if(i+1<=n){ int m = i*n+j; mcmf.AddEdge(y,m,k,0); } } } LL cost; mcmf.MincostMaxflow(s,t,cost); printf("%lld\n",-cost); } return 0; }
原文:http://www.cnblogs.com/xiaochaoqun/p/7224591.html