首页 > 其他 > 详细

梯度下降在实践I -特征缩放

时间:2017-07-23 15:13:19      阅读:364      评论:0      收藏:0      [点我收藏+]

我们可以通过使每个输入值在大致相同的范围内加快梯度下降速度。这是因为θ下降很快在小范围和在大范围很慢,所以将振荡不到最佳当变量很不平衡

防止这种情况的方法是修改输入变量的范围,使它们完全相同。理想的:

技术分享

 

这些不是确切的要求,我们只是想加快速度。我们的目标是将所有输入变量大致放在其中一个范围内,或取一些。

有两种技术可以帮助我们进行特征缩放和均值归一化。特征缩放包括将输入值除以输入变量的最大值(即最大值减去最小值),从而使新范围仅为1。均值归一化包括从输入变量的值减去输入变量的平均值,从而使输入变量的新平均值为零。要实现这两种技术,请调整您的输入值,如本公式所示:

技术分享

 

ui:第i组输入量的平均值。

si:第i组输入量的最大值减去最小值。

 

请注意除以范围,或除以标准偏差,给出不同的结果。本课程的测验使用范围-编程练习使用标准差。

 

例如,如果XI表示房价为100到2000,平均值为1000,那么,

技术分享

 

梯度下降在实践I -特征缩放

原文:http://www.cnblogs.com/zhengzhe/p/7224539.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!