zzq很喜欢下国际象棋,一天,他拿着国际象棋中的“马”时突然想到一个问题:
给定两个棋盘上的方格a和b,马从a跳到b最少需要多少步?
现请你编程解决这个问题。
提示:国际象棋棋盘为8格*8格,马的走子规则为,每步棋先横走或直走一格,然后再往外斜走一格。
e2 e4
a1 b2
b2 c3
a1 h8
a1 h7
h8 a1
b1 c3
f6 f6
To get from e2 to e4 takes 2 knight moves. To get from a1 to b2 takes 4 knight moves. To get from b2 to c3 takes 2 knight moves. To get from a1 to h8 takes 6 knight moves. To get from a1 to h7 takes 5 knight moves. To get from h8 to a1 takes 6 knight moves. To get from b1 to c3 takes 1 knight moves. To get from f6 to f6 takes 0 knight moves.
题意描述:
输入起点坐标和终点坐标
计算并输出按照马的特殊走法从起点走到终点的最少步数。
解题思路:
用广度优先搜索计算图中两点间的最短路径。
代码:
1 #include<stdio.h> 2 #include<string.h> 3 struct note 4 { 5 int x,y,s; 6 }; 7 int main() 8 { 9 char list[9]; 10 int sx,sy,fx,fy,flag,k,tx,ty; 11 struct note q[100]; 12 int head,tail,a[11][11]; 13 int next[8][2]={ 14 {1,2},{2,1},{2,-1},{1,-2},{-1,-2},{-2,-1},{-2,1},{-1,2}}; 15 while(gets(list) != NULL) 16 { 17 sx=list[0]-‘a‘+1; 18 sy=list[1]-‘0‘; 19 fx=list[3]-‘a‘+1; 20 fy=list[4]-‘0‘; 21 if(sx==fx&&sy==fy) 22 { 23 printf("To get from %c%c to %c%c takes 0 knight moves.\n",list[0],list[1] 24 ,list[3],list[4]); 25 continue; 26 } 27 head=1;tail=1; 28 q[tail].x=sx; 29 q[tail].y=sy; 30 q[tail].s=0; 31 memset(a,0,sizeof(a)); 32 a[sx][sy]=1; 33 tail++; 34 35 flag=0; 36 while(head<tail) 37 { 38 39 for(k=0;k<=7;k++) 40 { 41 tx=q[head].x+next[k][0]; 42 ty=q[head].y+next[k][1]; 43 if(tx<1 || tx>8 || ty<1 || ty>8) 44 continue; 45 if(a[tx][ty]==0) 46 { 47 a[tx][ty]=1; 48 q[tail].x=tx; 49 q[tail].y=ty; 50 q[tail].s=q[head].s+1; 51 tail++; 52 } 53 if(tx==fx&&ty==fy) 54 { 55 flag=1; 56 break; 57 } 58 } 59 if(flag==1) 60 break; 61 head++; 62 } 63 printf("To get from %c%c to %c%c takes %d knight moves.\n",list[0],list[1] 64 ,list[3],list[4],q[tail-1].s); 65 } 66 return 0; 67 }
易错分析:
1、此题虽然题意未说不能重复走,但是还是不能重复走的,所以记得标记已经走过的路
2、初始化标标记数组
3、注意当起点坐标和终点坐标相等的时候输出0
4、棋盘的边界判断,关键是8*8方格要理解清楚
样例测试:
h1 a4
f1 e6
a1 a2
样例输出:
To get from h1 to a4 takes 4 knight moves.
To get from f1 to e6 takes 4 knight moves.
To get from a1 to a2 takes 3 knight moves.
原文:http://www.cnblogs.com/wenzhixin/p/7225229.html