http://poj.org/problem?id=3714
想巩固一下最近点对,于是去网上搜了一道据说类似的题。一看貌似果然类似,给一个点集A,一个点集B,求min(distance(x, y))(x∈A,y∈B)。想了一下,发现只需让同一点集中的点距离无穷大即可。其他同上一篇博文中的HDU1007。
1 #include <stdio.h> 2 #include <math.h> 3 #include <algorithm> 4 using namespace std; 5 const int MAXN = 200010; 6 const double INF = 10000000000000.0; 7 struct Point{ 8 double x, y; 9 int flag; 10 }x[MAXN]; 11 int y[MAXN], z[MAXN]; 12 bool cmpx(const Point& a, const Point& b) 13 { return a.x < b.x; } 14 bool cmpy(const int& a, const int& b) 15 { return x[a].y < x[b].y; } 16 inline double dis(const Point a, const Point b) 17 { return a.flag ^ b.flag ? sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y)) : INF; } 18 19 void Merge(int z[], int y[], int l, int r, int m) 20 { 21 int i = l, j = m+1, k = l; 22 while(i <= m && j <= r) 23 if(x[z[i]].y <= x[z[j]].y) y[k++] = z[i++]; 24 else y[k++] = z[j++]; 25 while(i <= m) y[k++] = z[i++]; 26 while(j <= r) y[k++] = z[j++]; 27 } 28 29 double close(int y[], int z[], int l, int r) 30 { 31 if(l+1 == r) 32 return dis(x[l], x[r]); 33 if(l+2 == r) 34 return min(dis(x[l], x[l+1]), min(dis(x[l+1], x[r]), dis(x[l], x[r]))); 35 int m = l+r>>1; 36 for(int i=l, j=m+1, k=l ; k<=r ; k++) 37 if(y[k] > m) z[j++] = y[k]; 38 else z[i++] = y[k]; 39 double res = min(close(z, y, l, m), close(z, y, m+1, r)); 40 Merge(z, y, l, r, m); 41 int rt = l; 42 for(int i=l ; i<=r ; i++) 43 if(fabs(x[y[m]].x - x[y[i]].x) < res) 44 z[rt++] = y[i]; 45 for(int i=l ; i<rt ; i++) 46 for(int j=i+1 ; j<rt ; j++) 47 { 48 if(x[z[j]].y - x[z[i]].y >= res) break; 49 res = min(res, dis(x[z[j]], x[z[i]])); 50 } 51 return res; 52 } 53 54 int main() 55 { 56 // freopen("input", "r", stdin); 57 int t, n; scanf("%d", &t); 58 while(t--) 59 { 60 scanf("%d", &n); 61 for(int i=0 ; i<n ; i++) 62 scanf("%lf %lf", &x[i].x, &x[i].y), x[i].flag = 0, y[i] = i; 63 for(int i=n ; i<n<<1 ; i++) 64 scanf("%lf %lf", &x[i].x, &x[i].y), x[i].flag = -1, y[i] = i; 65 n <<= 1; 66 sort(x, x+n, cmpx); 67 sort(y, y+n, cmpy); 68 printf("%.3lf\n", close(y, z, 0, n-1)); 69 } 70 }
TLE了几次是因为忘记65行的把n乘2了。。。
手多抖了一下,去网上搜,发现毁三观了:http://blog.renren.com/share/262032317/14534482490
想了一下确实有道理,如果存在一个点对的距离为无穷大,就无法得出O(nlogn)的做法
随机化算法不会,所谓的voronoi图更没听说过。。。。只能用分治假装O(nlogn)混过去了,反正poj数据弱~。~
原文:http://www.cnblogs.com/holiday2014/p/3515437.html