首页 > 其他 > 详细

TensorFlow基础9——tensorboard显示网络结构

时间:2017-08-14 15:57:04      阅读:351      评论:0      收藏:0      [点我收藏+]

 

import tensorflow as tf 
import numpy as np 
import matplotlib.pyplot as plt 

def add_layer(input,in_size,out_size,activation_function=None):
    with tf.name_scope(layer):
        with tf.name_scope(Weights):
            Weights = tf.Variable(tf.random_normal([in_size,out_size]),name=w)
        with tf.name_scope(biases):
            biases = tf.Variable(tf.zeros([1,out_size])+0.1,name=b)
        with tf.name_scope(Wx_plus_b):
            Wx_plus_b = tf.add(tf.matmul(input,Weights),biases)
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)#噪音
y_data = np.square(x_data)-0.5+noise

with tf.name_scope(inputs):
    xs = tf.placeholder(tf.float32,[None,1],name=x_input)
    ys = tf.placeholder(tf.float32,[None,1],name=y_input)

#add hidden layer
l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
#add output layer
predition = add_layer(l1,10,1,activation_function=None)

with tf.name_scope(loss):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-predition),reduction_indices=[1]))
with tf.name_scope(train):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init = tf.initialize_all_variables()
sess = tf.Session()
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("D:/logs/",sess.graph) #目录结构尽量简单,复杂了容易出现找不到文件,原因不清楚
sess.run(init)

执行后,在命令行中输入,

一定要先到logs文件夹所在目录下,在输入下面命令,不然会找不到

tensorboard --logdir=D:/logs/   #文件目录和之前里的保持一致

执行结果:

技术分享

打开浏览器:

  输入技术分享显示的网址

技术分享

 

TensorFlow基础9——tensorboard显示网络结构

原文:http://www.cnblogs.com/renzhong/p/7358124.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!