首页 > 其他 > 详细

HADOOP之MAPREDUCE程序应用二

时间:2014-06-22 19:58:39      阅读:313      评论:0      收藏:0      [点我收藏+]

摘要:MapReduce程序进行单词计数。

关键词:MapReduce程序  单词计数

数据源:人工构造英文文档file1.txt,file2.txt。

file1.txt 内容

Hello   Hadoop

I   am  studying   the   Hadoop  technology

file2.txt内容

Hello  world

The  world  is  very  beautiful

I   love    the   Hadoop    and    world

问题描述:

统计人工构造的英文文档中单词的频数,要求输出的结果按照单词字母的顺序进行排序。

解决方案:

1  开发工具:VM10+ Ubuntu12.04+ Hadoop1.1.2

2  设计思路:把英文文档内容且分成单词,然后把所有相同的单词聚集在一起,最后计算各个单词的频数。

程序清单:

package com.wangluqing;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {
public static class TokenizerMapper extends Mapper<Object,Text,Text,IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException,InterruptedException {
StringTokenizer its = new StringTokenizer(value.toString());

while (its.hasMoreTokens()) {
word.set(its.nextToken());
context.write(word,one);
}

}
}

public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for(IntWritable val:values) {
sum += val.get();
}
result.set(sum);
context.write(key,result);
}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
if(otherArgs.length !=2 ) {
System.err.println("Usage:wordcount<in><out>");
System.exit(2);
}
Job job = new Job(conf,"word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job,new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job,new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true)?0:1);
}
}

3 执行程序

1)创建输入目录

hadoop  fs  -mkdir   wordcount_input

2)上传本地英文文档

hadoop  fs -put  /usr/local/datasource/article/*   wordcount_input

3)编译WordCount.java程序,把结果存放在当前目录的WordCount目录下。

root@hadoop:/usr/local/program/hadoop# javac -classpath hadoop-core-1.1.2.jar:lib/commons-cli-1.2.jar -d WordCount WordCount.java

4) 将编译结果打成Jar包

jar -cvf  wordcount.jar   WordCount/  .

5)运行WordCount程序,输入目录为wordcount_input,输出目录为wordcount_output。

hadoop jar wordcount.jar  com.wangluqing.WordCount  wordcount_input  wordcount_output

6) 查看各个单词频数结果

root@hadoop:/usr/local/program/hadoop# hadoop fs -cat wordcount_output/part-r-00000

Hadoop 3
Hello 2
I 2
The 1
am 1
and 1
beautiful 1
is 1
love 1
studying 1
technology 1
the 2
very 1
world 3

总结:

WordCount程序是最简单也是最具代表性的MapReduce程序,一定程度上MapReduce设计的初衷,即对日志文件的分析。

Resource:

 http://www.wangluqing.com/2014/03/hadoop-mapreduce-programapp2/

2  《Hadoop实战 第二版》陆嘉恒著 第5章 MapReduce应用案例

 

HADOOP之MAPREDUCE程序应用二,布布扣,bubuko.com

HADOOP之MAPREDUCE程序应用二

原文:http://blog.csdn.net/wangloveall/article/details/32656419

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!