首页 > 其他 > 详细

Advanced Optimization(高级优化)

时间:2017-08-17 18:27:48      阅读:305      评论:0      收藏:0      [点我收藏+]

Note: [7:35 - ‘100‘ should be 100 instead. The value provided should be an integer and not a character string.]

"Conjugate gradient", "BFGS", and "L-BFGS" are more sophisticated, faster ways to optimize θ that can be used instead of gradient descent. We suggest that you should not write these more sophisticated algorithms yourself (unless you are an expert in numerical computing) but use the libraries instead, as they‘re already tested and highly optimized. Octave provides them.

We first need to provide a function that evaluates the following two functions for a given input value θ:

技术分享

We can write a single function that returns both of these:

function [jVal, gradient] = costFunction(theta)
  jVal = [...code to compute J(theta)...];
  gradient = [...code to compute derivative of J(theta)...];
end

Then we can use octave‘s "fminunc()" optimization algorithm along with the "optimset()" function that creates an object containing the options we want to send to "fminunc()". (Note: the value for MaxIter should be an integer, not a character string - errata in the video at 7:30)

options = optimset(‘GradObj‘, ‘on‘, ‘MaxIter‘, 100);
initialTheta = zeros(2,1);
   [optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options);

 We give to the function "fminunc()" our cost function, our initial vector of theta values, and the "options" object that we created beforehand. 

  

 

Advanced Optimization(高级优化)

原文:http://www.cnblogs.com/ne-zha/p/7383091.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!