题意:给你一张带权有向图,让你求最大树形图。并在此前提下令n号结点父亲的编号最小。
比赛的时候套了个二分,TLE了。
实际上可以给每个边的权值乘1000,对于n号结点的父边,加上(999-父结点编号)大小的权值,这样即可保证最大树形图的前提下,n号结点父亲的编号最小。
网上找了个朱-刘算法的板子,把边权取负就能跑最大树形图了。
#include <cstdio> #include <string> #include <cstring> #define MAXN 1005 #define MAXM 10005 using namespace std; struct node { int u, v; int w; }edge[MAXM]; int pre[MAXN], id[MAXN], vis[MAXN], n, m; int in[MAXN]; typedef int type; #define INF 2000000000 type Directed_MST(int root, int V, int E) { type ret = 0; while(true) { //1.????? for(int i = 0; i < V; i++) in[i] = INF; for(int i = 0; i < E; i++) { int u = edge[i].u; int v = edge[i].v; if(edge[i].w < in[v] && u != v) {pre[v] = u; in[v] = edge[i].w;} } for(int i = 0; i < V; i++) { if(i == root) continue; if(in[i] == INF) return -1;//???????????,??????? } //2.?? int cnt = 0; memset(id, -1, sizeof(id)); memset(vis, -1, sizeof(vis)); in[root] = 0; for(int i = 0; i < V; i++) //????? { ret += in[i]; int v = i; while(vis[v] != i && id[v] == -1 && v != root) //?????????,?????????,??????? { vis[v] = i; v = pre[v]; } if(v != root && id[v] == -1)//?? { for(int u = pre[v]; u != v; u = pre[u]) id[u] = cnt; id[v] = cnt++; } } if(cnt == 0) break; //?? ?break for(int i = 0; i < V; i++) if(id[i] == -1) id[i] = cnt++; //3.???? for(int i = 0; i < E; i++) { int u = edge[i].u; int v = edge[i].v; edge[i].u = id[u]; edge[i].v = id[v]; if(id[u] != id[v]) edge[i].w -= in[v]; } V = cnt; root = id[root]; } return ret; } int zu,xs[10005],ys[10005],zs[10005]; int main() { // freopen("1009.in","r",stdin); // freopen("1009.out","w",stdout); scanf("%d",&zu); for(;zu;--zu) { scanf("%d%d", &n, &m); for(int i = 0; i < m; i++) { scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w); edge[i].u--; edge[i].v--; edge[i].w*=1000; if(edge[i].v==n-1){ edge[i].w+=(999-edge[i].u); } edge[i].w=-edge[i].w; xs[i]=edge[i].u; ys[i]=edge[i].v; zs[i]=edge[i].w; if(edge[i].u == edge[i].v){ edge[i].w = INF; zs[i] = INF; } } int ans = Directed_MST(0, n, m); printf("%d %d\n",(-ans)/1000,1000-(-ans)%1000); } return 0; }
【朱-刘算法】【最小树形图】hdu6141 I am your Father!
原文:http://www.cnblogs.com/autsky-jadek/p/7385095.html