首页 > 其他 > 详细

取模运算

时间:2017-08-19 13:45:26      阅读:361      评论:0      收藏:0      [点我收藏+]

取模运算(“Modulo Operation”)和取余运算(“Complementation ”)两个概念有重叠的部分但又不完全一致。主要的区别在于对负整数进行除法运算时操作不同。取模主要是用于计算机术语中。取余则更多是数学概念。模运算在数论和程序设计中都有着广泛的应用,从奇偶数的判别到素数的判别,从模幂运算到最大公约数的求法,从孙子问题到凯撒密码问题,无不充斥着模运算的身影。

取余运算区别
对于整型数a,b来说,取模运算或者求余运算的方法都是:
1.求 整数商: c = a/b;
2.计算模或者余数: r = a - c*b.
求模运算和求余运算在第一步不同: 取余运算在取c的值时,向0 方向舍入(fix()函数);

而取模运算在计算c的值时,向负无穷方向舍入(floor()函数)。
例如:计算-7 Mod 4
那么:a = -7;b = 4;
第一步:求整数商c,如进行求模运算c = -2(向负无穷方向舍入),求余c = -1(向0方向舍入);
第二步:计算模和余数的公式相同,但因c的值不同,求模时r = 1,求余时r = -3。
归纳:当a和b符号一致时,求模运算和求余运算所得的c的值一致,因此结果一致。
当符号不一致时,结果不一样。求模运算结果的符号和b一致,求余运算结果的符号和a一致。
另外各个环境下%运算符的含义不同,比如c/c++,java 为取余,而python则为取模。

取模运算

原文:http://www.cnblogs.com/yangruyi/p/7396077.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!