首页 > 其他 > 详细

常州模拟赛d3t2 灰狼呼唤着同胞

时间:2017-08-23 23:53:24      阅读:295      评论:0      收藏:0      [点我收藏+]

题目背景

我的母亲柯蒂丽亚,是一个舞者。身披罗纱,一身异国装扮的她,来自灰狼的村子。

曾经在灰狼村子担任女侍的她,被认定在某晚犯下可怕的罪行之后,被赶出了村子。

一切的元凶,都要回到母亲犯下重罪的那一晚。

题目描述

我不认为柯蒂丽亚有犯罪。

二十年前的混沌,一共有n块碎片。

这n块碎片曾经两两之间都有联系,可是很多联系都在时间的洪流中消失了。

现在,我只能确定其中m条联系的种类。

每条联系都是一条无向边,任意两块碎片之间至多有一条联系,没有联系会连接在同一块碎片的两端。

联系有两种。一种是冲突,用0表示;另一种是吻合,用1表示。

虽然已经过去了二十年,但是联系的种类是不会变的。

现在,我想要用这m条联系,去推断二十年前的n(n-1)/2条联系的种类。

如果我推理出所有联系的种类,那么我就可以将混沌言语化,证明柯蒂丽亚的清白。

在灰狼的村子,我得知了推理的唯一条件:

二十年前,对于任意三块互不相同的碎片,要么这三块碎片两两吻合,要么恰好有一对碎片互相吻合。

我想要知道,二十年前n块碎片两两之间的联系,可能有多少种。

你只要输出方案数模998244353之后的结果。如果已经确定的m条联系不符合上述条件,请输出0。

两种方案不同,当且仅当存在两块碎片,在一种方案中冲突,在另一种方案中吻合。也就是说,你要求的是有多少种可能的原图。

【输入描述】

第一行两个整数Test,T,Test表示测试点的编号,T表示数据的组数。保证T≤3。

接下来T组数据,每组数据第一行两个整数n,m,

接下来m行,每行三个整数u,v,t,表示第u块碎片和第v块碎片之间联系的种类为t。

【输出描述】

共T行,每行一个整数,表示方案数对998244353取模后的结果。

输入输出格式

输入格式:

 

输出格式:

 

输入输出样例

输入样例#1:
0 2
3 0
4 2
1 2 1
1 3 0
输出样例#1:
4
2

说明

n <= 10^5

m <= 10^6

分析:考虑这样一个图:技术分享,把一个连通块分成AB两部分,其中A和B两个不同的集合中每两个点都是吻合的,A集合的点到B集合的点之间每两个点都是冲突的.这样你任取三个点都是满足要求的.然后我们新加一个连通块:技术分享,连线的代表都是冲突的,圆圈里的是吻合的,这是一种合法的方案,我们把CD交换一下,得到的又是一种新的方案,然后这两个连通块又可以合并成一个连通块.n个连通块有2*(n-1)条边连接,每两条边可以互换,这也就是说答案就是2^(cnt - 1),cnt为连通块个数。如果连通块退化成一个点也成立.

    关于如何求连通块个数:有向图可以用tarjan缩点,无向图可以用并查集.

考场上犯了几个脑残错误:1.flag没有清零 2.快速幂传递的参数传成了int,大数据直接爆掉QAQ,结果只有10分.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>

using namespace std;

const int mod = 998244353;

int test, t, n, m, fa[300010];
bool flag = false;

int find(int x)
{
    if (x == fa[x])
        return x;
    return fa[x] = find(fa[x]);
}

void hebing(int x, int y)
{
    int fx = find(x), fy = find(y);
    if (fx != fy)
    fa[fy] = fx;
}

long long qpow(long long a, long long n)
{
    long long result = 1;
    while (n) {
        if (n & 1) result = (result*a) % mod;
        a = (a*a) % mod;
        n >>= 1;
    }
    return result;
}

int main()
{
    scanf("%d%d", &test, &t);
    while (t--)
    {
        flag = 0;
        scanf("%d%d", &n, &m);
        for (int i = 1; i <= 2 * n; i++)
            fa[i] = i;
        for (int i = 1; i <= m; i++)
        {
            int u, v, tt;
            scanf("%d%d%d", &u, &v, &tt);
            if (tt == 1)
            {
                if (find(u + n) == find(v) || find(u) == find(v + n))
                    flag = 1;
                else
                {
                    hebing(u, v);
                    hebing(u + n, v + n);
                }
            }
            else
            {
                if (find(u) == find(v) || find(u + n) == find(v + n))
                    flag = 1;
                else
                {
                    hebing(u + n, v);
                    hebing(u, v + n);
                }
            }
        }
        if (flag)
            printf("0\n");
        else
        {
            int cnt = 0;
            for (int i = 1; i <= n; i++)
                if (fa[i] == i)
                    cnt++;
            printf("%lld\n", qpow(2, cnt - 1));
        }
    }

    return 0;
}

 

常州模拟赛d3t2 灰狼呼唤着同胞

原文:http://www.cnblogs.com/zbtrs/p/7420508.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!