首页 > 编程语言 > 详细

Python 3 进程池与回调函数

时间:2017-08-30 23:30:29      阅读:536      评论:0      收藏:0      [点我收藏+]

Python 3 进程池与回调函数

一、进程池

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。多进程是实现并发的手段之一,需要注意的问题是:

  1. 很明显需要并发执行的任务通常要远大于核数
  2. 一个操作系统不可能无限开启进程,通常有几个核就开几个进程
  3. 进程开启过多,效率反而会下降(开启进程是需要占用系统资源的,而且开启多余核数目的进程也无法做到并行)
  4. 例如当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个.......手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。

我们就可以通过维护一个进程池来控制进程数目,比如httpd的进程模式,规定最小进程数和最大进程数...

ps:对于远程过程调用的高级应用程序而言,应该使用进程池,Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,就重用进程池中的进程。

1、创建进程池的类:如果指定numprocess为3,则进程池会从无到有创建三个进程,然后自始至终使用这三个进程去执行所有任务,不会开启其他进程

Pool([numprocess  [,initializer [, initargs]]]):创建进程池

2、参数介绍:

1 numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值
2 initializer:是每个工作进程启动时要执行的可调用对象,默认为None
3 initargs:是要传给initializer的参数组

3、方法介绍:

主要方法:

1 p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async()
2 p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。
3   
4 p.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成
5 P.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用

4、其他方法(了解可以)

技术分享
方法apply_async()和map_async()的返回值是AsyncResul的实例obj。实例具有以下方法
obj.get():返回结果,如果有必要则等待结果到达。timeout是可选的。如果在指定时间内还没有到达,将引发一场。如果远程操作中引发了异常,它将在调用此方法时再次被引发。
obj.ready():如果调用完成,返回True
obj.successful():如果调用完成且没有引发异常,返回True,如果在结果就绪之前调用此方法,引发异常
obj.wait([timeout]):等待结果变为可用。
obj.terminate():立即终止所有工作进程,同时不执行任何清理或结束任何挂起工作。如果p被垃圾回收,将自动调用此函数
View Code

5、应用

技术分享
from multiprocessing import Pool
import os,time
def work(n):
    print(%s run %os.getpid())
    time.sleep(3)
    return n**2

if __name__ == __main__:
    p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
    res_l=[]
    for i in range(10):
        res=p.apply(work,args=(i,)) #同步运行,阻塞、直到本次任务执行完毕拿到res
        res_l.append(res)
print(res_l)
apply同步执行:阻塞式
技术分享
from multiprocessing import Pool
import os,time
def work(n):
    print(%s run %os.getpid())
    time.sleep(3)
    return n**2

if __name__ == __main__:
    p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
    res_l=[]
    for i in range(10):
        res=p.apply_async(work,args=(i,)) #同步运行,阻塞、直到本次任务执行完毕拿到res
        res_l.append(res)

    #异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,等待进程池内任务都处理完,然后可以用get收集结果,否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了
    p.close()
    p.join()
    for res in res_l:
        print(res.get()) #使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get
apply_async异步执行:非阻塞
技术分享
#一:使用进程池(非阻塞,apply_async)
#coding: utf-8
from multiprocessing import Process,Pool
import time

def func(msg):
    print( "msg:", msg)
    time.sleep(1)
    return msg

if __name__ == "__main__":
    pool = Pool(processes = 3)
    res_l=[]
    for i in range(10):
        msg = "hello %d" %(i)
        res=pool.apply_async(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
        res_l.append(res)
    print("==============================>") #没有后面的join,或get,则程序整体结束,进程池中的任务还没来得及全部执行完也都跟着主进程一起结束了

    pool.close() #关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成
    pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束

    print(res_l) #看到的是<multiprocessing.pool.ApplyResult object at 0x10357c4e0>对象组成的列表,而非最终的结果,但这一步是在join后执行的,证明结果已经计算完毕,剩下的事情就是调用每个对象下的get方法去获取结果
    for i in res_l:
        print(i.get()) #使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get

#二:使用进程池(阻塞,apply)
#coding: utf-8
from multiprocessing import Process,Pool
import time

def func(msg):
    print( "msg:", msg)
    time.sleep(0.1)
    return msg

if __name__ == "__main__":
    pool = Pool(processes = 3)
    res_l=[]
    for i in range(10):
        msg = "hello %d" %(i)
        res=pool.apply(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
        res_l.append(res) #同步执行,即执行完一个拿到结果,再去执行另外一个
    print("==============================>")
    pool.close()
    pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束

    print(res_l) #看到的就是最终的结果组成的列表
    for i in res_l: #apply是同步的,所以直接得到结果,没有get()方法
        print(i)
详解:apply_async与apply

使用进程池维护固定数目的进程

技术分享
#Pool内的进程数默认是cpu核数,假设为4(查看方法os.cpu_count())
#开启6个客户端,会发现2个客户端处于等待状态
#在每个进程内查看pid,会发现pid使用为4个,即多个客户端公用4个进程
from socket import *
from multiprocessing import Pool
import os

server=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind((127.0.0.1,8080))
server.listen(5)

def talk(conn,client_addr):
    print(进程pid: %s %os.getpid())
    while True:
        try:
            msg=conn.recv(1024)
            if not msg:break
            conn.send(msg.upper())
        except Exception:
            break

if __name__ == __main__:
    p=Pool()
    while True:
        conn,client_addr=server.accept()
        p.apply_async(talk,args=(conn,client_addr))
        # p.apply(talk,args=(conn,client_addr)) #同步的话,则同一时间只有一个客户端能访问
server服务端
技术分享
from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect((127.0.0.1,8080))


while True:
    msg=input(>>: ).strip()
    if not msg:continue

    client.send(msg.encode(utf-8))
    msg=client.recv(1024)
    print(msg.decode(utf-8))
客户端

并发开启多个客户端,服务端同一时间只有3个不同的pid,干掉一个客户端,另外一个客户端才会进来,被3个进程之一处理。

二、 回掉函数:

需要回调函数的场景:进程池中任何一个任务一旦处理完了,就立即告知主进程:我好了额,你可以处理我的结果了。主进程则调用一个函数去处理该结果,该函数即回调函数

我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果。

技术分享
from multiprocessing import Pool
import requests
import json
import os

def get_page(url):
    print(<进程%s> get %s %(os.getpid(),url))
    respone=requests.get(url)
    if respone.status_code == 200:
        return {url:url,text:respone.text}

def pasrse_page(res):
    print(<进程%s> parse %s %(os.getpid(),res[url]))
    parse_res=url:<%s> size:[%s]\n %(res[url],len(res[text]))
    with open(db.txt,a) as f:
        f.write(parse_res)


if __name__ == __main__:
    urls=[
        https://www.baidu.com,
        https://www.python.org,
        https://www.openstack.org,
        https://help.github.com/,
        http://www.sina.com.cn/
    ]

    p=Pool(3)
    res_l=[]
    for url in urls:
        res=p.apply_async(get_page,args=(url,),callback=pasrse_page)
        res_l.append(res)

    p.close()
    p.join()
    print([res.get() for res in res_l]) #拿到的是get_page的结果,其实完全没必要拿该结果,该结果已经传给回调函数处理了

‘‘‘
打印结果:
<进程3388> get https://www.baidu.com
<进程3389> get https://www.python.org
<进程3390> get https://www.openstack.org
<进程3388> get https://help.github.com/
<进程3387> parse https://www.baidu.com
<进程3389> get http://www.sina.com.cn/
<进程3387> parse https://www.python.org
<进程3387> parse https://help.github.com/
<进程3387> parse http://www.sina.com.cn/
<进程3387> parse https://www.openstack.org
[{‘url‘: ‘https://www.baidu.com‘, ‘text‘: ‘<!DOCTYPE html>\r\n...‘,...}]
View Code
技术分享
from multiprocessing import Pool
import time,random
import requests
import re

def get_page(url,pattern):
    response=requests.get(url)
    if response.status_code == 200:
        return (response.text,pattern)

def parse_page(info):
    page_content,pattern=info
    res=re.findall(pattern,page_content)
    for item in res:
        dic={
            index:item[0],
            title:item[1],
            actor:item[2].strip()[3:],
            time:item[3][5:],
            score:item[4]+item[5]

        }
        print(dic)
if __name__ == __main__:
    pattern1=re.compile(r<dd>.*?board-index.*?>(\d+)<.*?title="(.*?)".*?star.*?>(.*?)<.*?releasetime.*?>(.*?)<.*?integer.*?>(.*?)<.*?fraction.*?>(.*?)<,re.S)

    url_dic={
        http://maoyan.com/board/7:pattern1,
    }

    p=Pool()
    res_l=[]
    for url,pattern in url_dic.items():
        res=p.apply_async(get_page,args=(url,pattern),callback=parse_page)
        res_l.append(res)

    for i in res_l:
        i.get()

    # res=requests.get(‘http://maoyan.com/board/7‘)
    # print(re.findall(pattern,res.text))
爬虫案例:

如果在主进程中等待进程池中所有任务都执行完毕后,再统一处理结果,则无需回调函数

技术分享
from multiprocessing import Pool
import time,random,os

def work(n):
    time.sleep(1)
    return n**2
if __name__ == __main__:
    p=Pool()

    res_l=[]
    for i in range(10):
        res=p.apply_async(work,args=(i,))
        res_l.append(res)

    p.close()
    p.join() #等待进程池中所有进程执行完毕

    nums=[]
    for res in res_l:
        nums.append(res.get()) #拿到所有结果
    print(nums) #主进程拿到所有的处理结果,可以在主进程中进行统一进行处理
View Code

 

Python 3 进程池与回调函数

原文:http://www.cnblogs.com/qiangyuge/p/7455814.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!