首页 > 其他 > 详细

逻辑回归(Logistic Regression)

时间:2017-09-02 20:28:56      阅读:446      评论:0      收藏:0      [点我收藏+]
import numpy as np
import random

def genData(numPoints,bias,variance):#实例 偏好 方差
    x = np.zeros(shape=(numPoints,2))#行列
    y = np.zeros(shape=(numPoints))#
    for i in range(0,numPoints):#0->numPoints-1
        x[i][0]=1
        x[i][1]=i
        y[i]=(i+bias)+random.uniform(0,1)+variance
    return x,y

def gradientDescent(x,y,theta,alpha,m,numIterations):
    xTran = np.transpose(x)
    for i in range(numIterations):
        hypothesis = np.dot(x,theta)
        loss = hypothesis-y
        cost = np.sum(loss**2)/(2*m)
        gradient=np.dot(xTran,loss)/m
        theta = theta-alpha*gradient
        print ("Iteration %d | cost :%f" %(i,cost))
    return theta

x,y = genData(100, 25, 10)
print "x:"
print x
print "y:"
print y

m,n = np.shape(x)
n_y = np.shape(y)

print("m:"+str(m)+" n:"+str(n)+" n_y:"+str(n_y))

numIterations = 1000

alpha = 0.0005
theta = np.ones(n)
theta= gradientDescent(x, y, theta, alpha, m, numIterations)
print(theta)

 

逻辑回归(Logistic Regression)

原文:http://www.cnblogs.com/wlc297984368/p/7467620.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!