题目链接:点击打开链接
给定n*m的矩阵,[i,j]的点值为gcd(i,j)
给定一个k长的序列,问是否能匹配上 矩阵的某一行的连续k个元素
思路:
我们要求出一个解(i,j) 使得 i<=n && j<=m 此时输出 YES
对于j
j % b[0] = 0
j+1 % b[1] = 0
···
j+l % b[l] = 0
根据定理:若 a == b (mod n) => (a+c) == b+c (mod n)
所以将上式变换为
j % b[0] = 0
j % b[1] = -1
···
j % b[n-1] = - (n-1)
最后求出的i,j 检验一下是否满足 gcd(i,j+k) == input[k];
#include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> #include<math.h> #include<set> #include<queue> #include<vector> #include<map> using namespace std; #define ll __int64 ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } void extend_gcd (ll a , ll b , ll& d, ll &x , ll &y) { if(!b){d = a; x = 1; y = 0;} else {extend_gcd(b, a%b, d, y, x); y-=x*(a/b);} } ll china(ll l, ll r, ll *m, ll *a){ //下标[l,r] 方程x%m=a; ll lcm = 1; for(ll i = l; i <= r; i++)lcm = lcm/gcd(lcm,m[i])*m[i]; for(ll i = l+1; i <= r; i++) { ll A = m[l], B = m[i], d, x, y, c = a[i]-a[l]; extend_gcd(A,B,d,x,y); if(c%d)return -1; ll mod = m[i]/d; ll K = ((x*c/d)%mod+mod)%mod; a[l] = m[l]*K + a[l]; m[l] = m[l]*m[i]/d; } if(a[l]==0)return lcm; return a[l]; } #define N 10005 ll n[N],b[N],tmp[N],len,nn,mm; bool work(){ memset(b, 0, sizeof b); memcpy(tmp,n,sizeof n); ll i = china(1,len,n,b); if(i>nn || i<=0)return false; for(ll hehe = 1; hehe <= len; hehe++)b[hehe] = -hehe+1; memcpy(n,tmp, sizeof n); ll j = china(1,len,tmp,b); if(j+len-1>mm || j<=0)return false; for(ll hehe = 1; hehe <= len; hehe++)if(gcd(i,j+hehe-1)!=n[hehe])return false; return true; } int main(){ while(cin>>nn>>mm>>len){ for(ll i = 1; i <= len; i++) cin>>n[i]; work()?puts("YES"):puts("NO"); } return 0; }
Codeforces 338D GCD Table 中国剩余定理,布布扣,bubuko.com
Codeforces 338D GCD Table 中国剩余定理
原文:http://blog.csdn.net/qq574857122/article/details/33426497