多线程
1 线程:
线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程,车间负责把资源整合到一起,是一个资源单位,而一个车间内至少有一个流水线
进程只是用来把资源集中到一起(进程只是一个资源单位,或者说资源集合),而线程才是cpu上的执行单位
多线程:
多线程(即多个控制线程)的概念是,在一个进程中存在多个控制线程,多个控制线程共享该进程的地址空间,相当于一个车间内有多条流水线,都共用一个车间的资源
1. 多线程共享一个进程的地址空间
2. 线程比进程更轻量级,线程比进程更容易创建可撤销,在许多操作系统中,创建一个线程比创建一个进程要快10-100倍,在有大量线程需要动态和快速修改时,这一特性很有用
3. 若多个线程都是cpu密集型的,那么并不能获得性能上的增强,但是如果存在大量的计算和大量的I/O处理,拥有多个线程允许这些活动彼此重叠运行,从而会加快程序执行的速度。
4. 在多cpu系统中,为了最大限度的利用多核,可以开启多个线程,比开进程开销要小的多。(这一条并不适用于python)
2 开启线程的两种方式
#开启线程的方式一:使用替换threading模块提供的Thread from threading import Thread from multiprocessing import Process def task(): print(‘is running‘) if __name__ == ‘__main__‘: t=Thread(target=task,) # t=Process(target=task,) t.start() print(‘主‘) #开启线程的方式二:自定义类,继承Thread from threading import Thread from multiprocessing import Process class MyThread(Thread): def __init__(self,name): super().__init__() self.name=name def run(self): print(‘%s is running‘ %self.name) if __name__ == ‘__main__‘: t=MyThread(‘egon‘) # t=Process(target=task,) t.start() print(‘主‘)
3 在一个进程下开启多个线程与在一个进程下开启多个子进程的区别
from threading import Thread from multiprocessing import Process import os def task(): print(‘%s is running‘ %os.getpid()) if __name__ == ‘__main__‘: t1=Thread(target=task,) t2=Thread(target=task,) t1.start() t2.start() # 在主进程下开启多个线程,每个线程都跟主进程的pid一样 print(‘主‘,os.getpid()) t3=Process(target=task,) t4=Process(target=task,) t3.start() t4.start() # 开多个进程,每个进程都有不同的pid print(‘主‘,os.getpid())
# 多线程共享统一进程里的资源 from threading import Thread from multiprocessing import Process n=100 def work(): global n n=0 if __name__ == ‘__main__‘: p=Process(target=work,) p.start() p.join() print(‘主‘,n) t=Thread(target=work,) t.start() t.join() print(‘主‘,n)
4 守护进程
无论是进程还是线程,都遵循:守护xxx会等待主xxx运行完毕后被销毁
需要强调的是:运行完毕并非终止运行
1.对主进程来说,运行完毕指的是主进程代码运行完毕 2.对主线程来说,运行完毕指的是主线程所在的进程内所有非守护线程统统运行完毕,主线程才算运行完毕
详细解释:
1 主进程在其代码结束后就已经算运行完毕了(守护进程在此时就被回收),然后主进程会一直等非守护的子进程都运行完毕后回收子进程的资源(否则会产生僵尸进程),才会结束 2 主线程在其他非守护线程运行完毕后才算运行完毕(守护线程在此时就被回收)。因为主线程的结束意味着进程的结束,进程整体的资源都将被回收,而进程必须保证非守护线程都运行完毕后才能结束
#先看:守护进程 # from multiprocessing import Process import time def task1(): print(‘123‘) time.sleep(1) print(‘123done‘) def task2(): print(‘456‘) time.sleep(10) print(‘456done‘) if __name__ == ‘__main__‘: p1=Process(target=task1) p2=Process(target=task2) p1.daemon = True p1.start() p2.start() print(‘主‘) #再看:守护线程 from threading import Thread import time def task1(): print(‘123‘) time.sleep(10) print(‘123done‘) def task2(): print(‘456‘) time.sleep(1) print(‘456done‘) if __name__ == ‘__main__‘: t1=Thread(target=task1) t2=Thread(target=task2) t1.daemon=True t1.start() t2.start() print(‘主‘)
5 同步锁(GIL锁)
需要注意的点: 1.线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock仍然没有被释放则阻塞,即便是拿到执行权限GIL也要立刻交出来 2.join是等待所有,即整体串行,而锁只是锁住修改共享数据的部分,即部分串行,要想保证数据安全的根本原理在于让并发变成串行,join与互斥锁都可以实现,毫无疑问,互斥锁的部分串行效率要更高
机智的同学可能会问到这个问题,就是既然你之前说过了,Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock?
首先我们需要达成共识:锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据
然后,我们可以得出结论:保护不同的数据就应该加不同的锁。
最后,问题就很明朗了,GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock
过程分析:所有线程抢的是GIL锁,或者说所有线程抢的是执行权限
线程1抢到GIL锁,拿到执行权限,开始执行,然后加了一把Lock,还没有执行完毕,即线程1还未释放Lock,有可能线程2抢到GIL锁,开始执行,执行过程中发现Lock还没有被线程1释放,于是线程2进入阻塞,被夺走执行权限,有可能线程1拿到GIL,然后正常执行到释放Lock。。。这就导致了串行运行的效果
既然是串行,那我们执行
t1.start()
t1.join
t2.start()
t2.join()
这也是串行执行啊,为何还要加Lock呢,需知join是等待t1所有的代码执行完,相当于锁住了t1的所有代码,而Lock只是锁住一部分操作共享数据的代码。
因为Python解释器帮你自动定期进行内存回收,你可以理解为python解释器里有一个独立的线程,每过一段时间它起wake up做一次全局轮询看看哪些内存数据是可以被清空的,此时你自己的程序 里的线程和 py解释器自己的线程是并发运行的,假设你的线程删除了一个变量,py解释器的垃圾回收线程在清空这个变量的过程中的clearing时刻,可能一个其它线程正好又重新给这个还没来及得清空的内存空间赋值了,结果就有可能新赋值的数据被删除了,为了解决类似的问题,python解释器简单粗暴的加了锁,即当一个线程运行时,其它人都不能动,这样就解决了上述的问题, 这可以说是Python早期版本的遗留问题
from threading import Thread n=100 def task(): print(‘is running‘) if __name__ == ‘__main__‘: t1=Thread(target=task,) t2=Thread(target=task,) t3=Thread(target=task,) # t=Process(target=task,) t1.start() t2.start() t3.start() print(‘主‘)
锁通常被用来实现对共享资源的同步访问。为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁,则当前线程需等待其被释放),待资源访问完后,再调用release方法释放锁
互斥锁
from threading import Thread,Lock import time n=100 def work(): global n mutex.acquire() temp=n time.sleep(0.1) n=temp-1 mutex.release() if __name__ == ‘__main__‘: mutex=Lock() l=[] start=time.time() for i in range(100): t=Thread(target=work) l.append(t) t.start() for t in l: t.join() print(‘run time:%s value:%s‘ %(time.time()-start,n))
同步锁与互斥锁:
1.100个线程去抢GIL锁,即抢执行权限 2. 肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire() 3. 极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,被迫交出执行权限,即释放GIL 4.直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程
互斥锁与join的区别:
#不加锁:并发执行,速度快,数据不安全from threading import current_thread,Thread,Lockimport os,timedef task(): global n print(‘%s is running‘ %current_thread().getName()) temp=n time.sleep(0.5) n=temp-1if __name__ == ‘__main__‘: n=100 lock=Lock() threads=[] start_time=time.time() for i in range(100): t=Thread(target=task) threads.append(t) t.start() for t in threads: t.join() stop_time=time.time() print(‘主:%s n:%s‘ %(stop_time-start_time,n))‘‘‘Thread-1 is running Thread-2 is running ...... Thread-100 is running 主:0.5216062068939209 n:99‘‘‘#不加锁:未加锁部分并发执行,加锁部分串行执行,速度慢,数据安全from threading import current_thread,Thread,Lockimport os,timedef task(): #未加锁的代码并发运行 time.sleep(3) print(‘%s start to run‘ %current_thread().getName()) global n #加锁的代码串行运行 lock.acquire() temp=n time.sleep(0.5) n=temp-1 lock.release()if __name__ == ‘__main__‘: n=100 lock=Lock() threads=[] start_time=time.time() for i in range(100): t=Thread(target=task) threads.append(t) t.start() for t in threads: t.join() stop_time=time.time() print(‘主:%s n:%s‘ %(stop_time-start_time,n))‘‘‘Thread-1 is running Thread-2 is running ...... Thread-100 is running 主:53.294203758239746 n:0‘‘‘#有的同学可能有疑问:既然加锁会让运行变成串行,那么我在start之后立即使用join,就不用加锁了啊,也是串行的效果啊#没错:在start之后立刻使用jion,肯定会将100个任务的执行变成串行,毫无疑问,最终n的结果也肯定是0,是安全的,但问题是#start后立即join:任务内的所有代码都是串行执行的,而加锁,只是加锁的部分即修改共享数据的部分是串行的#单从保证数据安全方面,二者都可以实现,但很明显是加锁的效率更高.from threading import current_thread,Thread,Lockimport os,timedef task(): time.sleep(3) print(‘%s start to run‘ %current_thread().getName()) global n temp=n time.sleep(0.5) n=temp-1if __name__ == ‘__main__‘: n=100 lock=Lock() start_time=time.time() for i in range(100): t=Thread(target=task) t.start() t.join() stop_time=time.time() print(‘主:%s n:%s‘ %(stop_time-start_time,n))‘‘‘Thread-1 start to run Thread-2 start to run ...... Thread-100 start to run 主:350.6937336921692 n:0 #耗时是多么的恐怖‘‘‘
#多进程: #优点:可以利用多核优势 #缺点:开销大 #多线程: #优点:开销小 #缺点:不能利用多核优势 from threading import Thread from multiprocessing import Process import time #计算密集型 def work(): res=1 for i in range(100000000): res+=i if __name__ == ‘__main__‘: p_l=[] start=time.time() for i in range(4): # p=Process(target=work) #6.7473859786987305 p=Thread(target=work) #24.466399431228638 p_l.append(p) p.start() for p in p_l: p.join() print(time.time()-start) from threading import Thread from multiprocessing import Process import time #IO密集型 def work(): time.sleep(2) if __name__ == ‘__main__‘: p_l=[] start=time.time() for i in range(400): # p=Process(target=work) #12.104692220687866 p=Thread(target=work) #2.038116455078125 p_l.append(p) p.start() for p in p_l: p.join() print(time.time()-start)
6 死锁与递归锁
死锁:指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程
# 死锁现象 from threading import Thread,Lock,RLock import time mutexA=Lock() mutexB=Lock() class Mythread(Thread): def run(self): self.f1() self.f2() def f1(self): mutexA.acquire() print(‘\033[45m%s 抢到A锁\033[0m‘ %self.name) mutexB.acquire() print(‘\033[44m%s 抢到B锁\033[0m‘ %self.name) mutexB.release() mutexA.release() def f2(self): mutexB.acquire() print(‘\033[44m%s 抢到B锁\033[0m‘ %self.name) time.sleep(1) mutexA.acquire() print(‘\033[45m%s 抢到A锁\033[0m‘ %self.name) mutexA.release() mutexB.release() if __name__ == ‘__main__‘: for i in range(20): t=Mythread() t.start() #递归锁 from threading import Thread,Lock,RLock import time mutex=RLock() class Mythread(Thread): def run(self): self.f1() self.f2() def f1(self): mutex.acquire() print(‘\033[45m%s 抢到A锁\033[0m‘ %self.name) mutex.acquire() print(‘\033[44m%s 抢到B锁\033[0m‘ %self.name) mutex.release() mutex.release() def f2(self): mutex.acquire() print(‘\033[44m%s 抢到B锁\033[0m‘ %self.name) time.sleep(1) mutex.acquire() print(‘\033[45m%s 抢到A锁\033[0m‘ %self.name) mutex.release() mutex.release() if __name__ == ‘__main__‘: for i in range(20): t=Mythread() t.start()
解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。
这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:
mutexA=mutexB=threading.RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止
7 信号量Semaphore
Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()
from threading import Thread,current_thread,Semaphore import time,random sm=Semaphore(5) def work(): sm.acquire() print(‘%s 上厕所‘ %current_thread().getName()) time.sleep(random.randint(1,3)) sm.release() if __name__ == ‘__main__‘: for i in range(20): t=Thread(target=work) t.start()
与进程池是完全不同的概念,进程池Pool(4),最大只能产生4个进程,而且从头到尾都只是这四个进程,不会产生新的,而信号量是产生一堆线程/进程
8 事件event
线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行
event.isSet():返回event的状态值; event.wait():如果 event.isSet()==False将阻塞线程; event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度; event.clear():恢复event的状态值为False
例如,有多个工作线程尝试链接MySQL,我们想要在链接前确保MySQL服务正常才让那些工作线程去连接MySQL服务器,如果连接不成功,都会去尝试重新连接。那么我们就可以采用threading.Event机制来协调各个工作线程的连接操作
from threading import Thread,current_thread,Event import time event=Event() def conn_mysql(): count=1 while not event.is_set(): if count > 3: raise ConnectionError(‘链接失败‘) print(‘%s 等待第%s次链接mysql‘ %(current_thread().getName(),count)) event.wait(0.5) count+=1 print(‘%s 链接ok‘ % current_thread().getName()) def check_mysql(): print(‘%s 正在检查mysql状态‘ %current_thread().getName()) time.sleep(1) event.set() if __name__ == ‘__main__‘: t1=Thread(target=conn_mysql) t2=Thread(target=conn_mysql) check=Thread(target=check_mysql) t1.start() t2.start() check.start()
9 定时器
from threading import Timer def hello(n): print("hello, world",n) t = Timer(3, hello,args=(11,)) t.start() # after 1 seconds, "hello, world" will be printed
10 线程queue
import queue q=queue.Queue(3) #队列:先进先出 q.put(1) q.put(2) q.put(3) print(q.get()) print(q.get()) print(q.get()) q=queue.LifoQueue(3) #堆栈:后进先出 q.put(1) q.put(2) q.put(3) print(q.get()) print(q.get()) print(q.get()) q=queue.PriorityQueue(3) #数字越小优先级越高 q.put((10,‘data1‘)) q.put((11,‘data2‘)) q.put((9,‘data3‘)) print(q.get()) print(q.get()) print(q.get())
待整理。。。
本文出自 “lyndon” 博客,请务必保留此出处http://lyndon.blog.51cto.com/11474010/1963683
原文:http://lyndon.blog.51cto.com/11474010/1963683