证明:我们易知,当$f=0$时,取$y=0$即可,因此只需证明$f \ne 0$时定理成立
若$f$为$X$上的非零连续线性泛函,则$M = \left\{ {x|f\left( x \right) = 0} \right\}$为$X$的闭真子空间,从而由投影定理知,存在$u \in X\backslash M$,以及存在${u_0} \in M,z \in {M^ \bot }$,使得$z = u - {u_0}$,于是$z \in {M^ \bot }$且$z \ne 0$
由于$M \cap {M^ \bot } = \left\{ 0 \right\}$,则$f\left( z \right) \ne 0$.对于任意的$x\in X$,由$f\left( {x - \frac{{f\left( x \right)}}{{f\left( z \right)}}z} \right) = 0$可知\[x - \frac{{f\left( x \right)}}{{f\left( z \right)}}z \in M\]故\[\left( {x - \frac{{f\left( x \right)}}{{f\left( z \right)}}z,z} \right) = 0\]所以有\[f\left( x \right) = \frac{{f\left( z \right)}}{{{{\left\| z \right\|}^2}}}\left( {x,z} \right) = \left( {x,\frac{{\overline {f\left( z \right)} }}{{{{\left\| z \right\|}^2}}}z} \right)\]令$y = \frac{{\overline {f\left( z \right)} }}{{{{\left\| z \right\|}^2}}}z$,则对任意的$x\in X$,有$f\left( x \right) = \left( {x,y} \right)$
假设还存在$y‘ \in X$,使得$f\left( x \right) = \left( {x,y‘} \right)$对任意的$x\in X$成立,则对于$y - y‘ \in X$,有\[f\left( {y - y‘} \right) = \left( {y - y‘,y} \right) = \left( {y - y‘,y‘} \right) = 0\]因此有\[{\left\| {y - y‘} \right\|^2} = \left( {y - y‘,y - y‘} \right) = 0\]即${y = y‘}$,所以$f\left( x \right) = \left( {x,y} \right)$的表示是唯一的,并且此时有$\left\| f \right\| = \left\| y \right\|$
原文:http://www.cnblogs.com/ly758241/p/3806827.html