题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5122
Problem Description
Matt’s friend K.Bro is an ACMer.
Yesterday, K.Bro learnt an algorithm: Bubble sort. Bubble sort will compare each pair of adjacent items and swap them if they are in the wrong order. The process repeats until no swap is needed.
Today, K.Bro comes up with a new algorithm and names it K.Bro Sorting.
There are many rounds in K.Bro Sorting. For each round, K.Bro chooses a number, and keeps swapping it with its next number while the next number is less than it. For example, if the sequence is “1 4 3 2 5”, and K.Bro chooses “4”, he will get “1 3 2 4 5” after this round. K.Bro Sorting is similar to Bubble sort, but it’s a randomized algorithm because K.Bro will choose a random number at the beginning of each round. K.Bro wants to know that, for a given sequence, how many rounds are needed to sort this sequence in the best situation. In other words, you should answer the minimal number of rounds needed to sort the sequence into ascending order. To simplify the problem, K.Bro promises that the sequence is a permutation of 1, 2, . . . , N .
Input
The first line contains only one integer T (T ≤ 200), which indicates the number of test cases. For each test case, the first line contains an integer N (1 ≤ N ≤ 106).
The second line contains N integers ai (1 ≤ ai ≤ N ), denoting the sequence K.Bro gives you.
The sum of N in all test cases would not exceed 3 × 106.
Output
For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1), y is the minimal number of rounds needed to sort the sequence.
Sample Input
2
5
5 4 3 2 1
5
5 1 2 3 4
Sample Output
Case #1: 4
Case #2: 1
Hint
In the second sample, we choose “5” so that after the ?rst round, sequence becomes “1 2 3 4 5”, and the algorithm completes.
Source
题意描述:
输入数组元素的个数N(1 ≤ N ≤ 106)
计算并输出按下面的规则进行操作,最少需要进行几轮这样的操作使得数组中的元素按升序排列
规则:
对于每个数来说,如果它大于等于它右边的数,则交换两数的位置,直到小于右边的数或者到了数组尾部。将该数“归位”的一系列操作成为一轮。比如题中所说的“1 4 3 2 5”,将4归位后“1 3 2 4 5”,称为一轮操作。
解题思路:
先说结论,不清楚的再看详解。
结论:
从后向前遍历,计算比当前最小值大的数的个数。
详解:
首先,我们可以发现如果一个数的后面存在一个小于它的数,就必须要对它进行一轮操作,这个没有疑问,关键是进行完这一轮操作后该数是否已经彻底归位,换句话说,有可能存在对其进行二次操作(甚至是多次),例如,将3 1 4 5 2中的3归位,变成了1 3 4 5 2,很显然,这一轮操作的归位是不彻底的,因为3归位到2的后面才是彻底的归位。
那么怎么才能避免二次操作,就是问题的精髓所在了。还拿上面的例子为例,3归位到4之前1之后的判断依据是3比它之前的数都大,那是否需要继续进行交换(也是是否需要进行二次操作的关键)的判断依据是3后面的数中的有没有比3还小的,换句话说,3是否比它之后所有数中的最小数大,如果是,那么将该轮操作才算执行彻底;如果不是就证明3归位彻底,不需要进行二次操作,从而达到使得操作轮数最少的目的。
看到这,想必都在想怎么求得某个数后面的最小数呢,可以弄一个循环,遍历它之后的每个数,找到最小数,很直接的告诉你,会超时的,数据规模是一百万,两层循环就超时了。更巧妙的做法是,从后向前遍历,边走边找最小数,先假设a[n]为最小数,先前遍历,如果有比当前最小数大的数,直接计数,否则说明最小数需要更新了,更新最小数,继续想前找,直到找完。
问题很简单,AC代码也很短,但是如何能省时,省力的解决问题,才是竞赛最令人兴奋的地方。
AC代码:
1 #include<stdio.h>
2 int a[1000010];
3 int main()
4 {
5 int T,n,ans,t,i,min_num;
6 scanf("%d",&T);
7 for(t=1;t<=T;t++)
8 {
9 scanf("%d",&n);
10 for(i=1;i<=n;i++)
11 scanf("%d",&a[i]);
12 min_num=a[n];
13 ans=0;
14 for(i=n-1;i>=1;i--)
15 {
16 if(min_num < a[i])
17 ans++;
18 else
19 min_num=a[i];
20 }
21 printf("Case #%d: %d\n",t,ans);
22 }
23 return 0;
24 }
HDU 5122 K.Bro Sorting(模拟——思维题详解)
原文:http://www.cnblogs.com/wenzhixin/p/7529115.html