首页 > 数据库技术 > 详细

sparkStreaming结合sparkSql进行日志分析

时间:2017-09-19 16:38:37      阅读:291      评论:0      收藏:0      [点我收藏+]
package test
import java.util.Properties
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.{SQLContext, SaveMode}
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext

object demo9 {
def main (args : Array[String]) {
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("logapp")

val ssc = new StreamingContext(sparkConf, Seconds(10))

val lines = ssc.socketTextStream("localhost", 9999).map(x =>x.split(" "))

lines.foreachRDD(rdd => {
val sqlContext = SQLContextSingleton.getInstance(rdd.sparkContext)
import sqlContext.implicits._
//构造case class: DapLog,提取日志中相应的字段
val logDataFrame = rdd.map(w => DapLog(w(0).toInt,w(1),w(2),w(3)+" "+w(4))).toDF()

//注册为tempTable
//logDataFrame.registerTempTable("log")
logDataFrame.createOrReplaceTempView("log")
//查询该批次的字段 to_timestamp($"event_time", "MM/dd/yyyy HH:mm:ss")
val logCountsDataFrame = sqlContext.sql("SELECT login_id,user,event_name,to_timestamp(event_time, ‘yyyy-MM-dd HH:mm:ss‘) as event_time,lead(event_time,1,null) over(partition by login_id order by login_id ASC) as nextline_time FROM log")
//打印查询结果
val countN = logCountsDataFrame.count()
if (countN != 0){
logCountsDataFrame.show()
//下面保存会出错,我注释掉了/Users/huiliyang/streaming

//logCountsDataFrame.write.json("/Users/huiliyang/streaming/cc")
//logCountsDataFrame.write.parquet("/Users/huiliyang/streaming/bb")

val prop = new Properties()
prop.put("user", "root")
prop.put("password", "yh200888")
prop.put("driver","com.mysql.jdbc.Driver")
logCountsDataFrame.write.mode(SaveMode.Append).jdbc("jdbc:mysql://localhost:3306/school?useUnicode=true&characterEncoding=utf8", "log", prop)
}

})
ssc.start()
ssc.awaitTermination()

}
}

case class DapLog(login_id:Int, user:String, event_name:String, event_time:String)

object SQLContextSingleton {
@transient private var instance: SQLContext = _
def getInstance(sparkContext: SparkContext): SQLContext = {
if (instance == null) {
instance = new SQLContext(sparkContext)
}
instance
}

}

sparkStreaming结合sparkSql进行日志分析

原文:http://www.cnblogs.com/yhl-yh/p/7552505.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!