首页 > 其他 > 详细

laplace transform 拉普拉斯变换

时间:2017-09-23 13:12:10      阅读:355      评论:0      收藏:0      [点我收藏+]

参考网址:

1. https://en.wikipedia.org/wiki/First-hitting-time_model

2. https://en.wikipedia.org/wiki/Laplace_transform

技术分享

 

Probability theory

技术分享

 

By abuse of language, this is referred to as the Laplace transform of the random variable X itself. Replacing s by ?t gives the moment generating function of X. The Laplace transform has applications throughout probability theory, including first passage times of stochastic processessuch as Markov chains, and renewal theory.

Of particular use is the ability to recover the cumulative distribution function of a continuous random variable X by means of the Laplace transform as follows[11]

{\displaystyle F_{X}(x)={\mathcal {L}}^{-1}\!\left\{{\frac {1}{s}}E\left[e^{-sX}\right]\right\}\!(x)={\mathcal {L}}^{-1}\!\left\{{\frac {1}{s}}{\mathcal {L}}\{f\}(s)\right\}\!(x).}技术分享

laplace transform 拉普拉斯变换

原文:http://www.cnblogs.com/skykill/p/7580677.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!