首页 > 编程语言 > 详细

关于扩展欧几里得算法和逆元

时间:2017-09-24 12:16:06      阅读:307      评论:0      收藏:0      [点我收藏+]

关于扩展欧几里得算法和逆元

1.扩欧

a*x1+b*y1=gcd(a,b);

b*x2+(a%b)*y2=gcd(b, (a%b))= gcd(a,b);

a%b=a-(a/b)*b;

联立可得

x1=y2

y1=x2-(a/b)*y2;

递归的边界为b=0

此时x=1,y=0,然后回溯即可。

为什么要x=1,y=0呢?

因为此时gcd(a,b)=gcd(a,0)=a,故a*1+b*0=gcd(a,b)=a;

关于扩展欧几里得算法和逆元

原文:http://www.cnblogs.com/war1111/p/7586798.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!