首页 > 其他 > 详细

LA 5031

时间:2014-06-27 15:37:47      阅读:311      评论:0      收藏:0      [点我收藏+]

 Graph and Queries

Time limit: 3.000 second

You are given an undirected graph with N vertexes and M edges. Every vertex in this graph has an integer value assigned to it at the beginning. You‘re also given a sequence of operations and you need to process them as requested. Here‘s a list of the possible operations that you might encounter:

 

 

  1. Deletes an edge from the graph.

    The format is [D X], where X is an integer from 1 to M, indicating the ID of the edge that you should delete. It is guaranteed that no edge will be deleted more than once.

  2. Queries the weight of the vertex with K-th maximum value among all vertexes currently connected with vertex X (including X itself).

    The format is [Q X K], where X is an integer from 1 to N, indicating the id of the vertex, and you may assume that K will always fit into a 32-bit signed integer. In case K is illegal, the value for that query will be considered as undefined, and you should return 0 as the answer to that query.

  3. Changes the weight of a vertex.

    The format is [C X V], where X is an integer from 1 to N, and V is an integer within the range [ -106, 106].

The operations end with one single character, E, which indicates that the current case has ended. For simplicity, you only need to output one real number - the average answer of all queries.

 

Input 

There are multiple test cases in the input file. Each case starts with two integers N and M (1bubuko.com,布布扣Nbubuko.com,布布扣* 104, 0bubuko.com,布布扣Mbubuko.com,布布扣* 104), the number of vertexes in the graph. The next N lines describes the initial weight of each vertex (- 106bubuko.com,布布扣[weight][i]bubuko.com,布布扣106). The next part of each test case describes the edges in the graph at the beginning. Vertexes are numbered from 1 to N. The last part of each test case describes the operations to be performed on the graph. It is guaranteed that the number of query operations [Q X K] in each case will be in the range [ 1, 2 * 105], and there will be no more than * 105 operations that change the values of the vertexes [C X V].

There will be a blank line between two successive cases. A case with N = 0, M = 0 indicates the end of the input file and this case should not be processed by your program.

 

Output 

For each test case, output one real number - the average answer of all queries, in the format as indicated in the sample output. Please note that the result is rounded to six decimal places.

 

 


Explanation for samples:

For the first sample:

D 3 - deletes the 3rd edge in the graph (the remaining edges are (1, 2) and (2, 3))

Q 1 2 - finds the vertex with the second largest value among all vertexes connected with 1. The answer is 20.

Q 2 1 - finds the vertex with the largest value among all vertexes connected with 2. The answer is 30.

D 2 - deletes the 2nd edge in the graph (the only edge left after this operation is (1, 2))

Q 3 2 - finds the vertex with the second largest value among all vertexes connected with 3. The answer is 0 (Undefined).

C 1 50 - changes the value of vertex 1 to 50.

Q 1 1 - finds the vertex with the largest value among all vertex connected with 1. The answer is 50.

E - This is the end of the current test case. Four queries have been evaluated, and the answer to this case is (20 + 30 + 0 + 50) / 4 = 25.000.

 


For the second sample, caution about the vertex with same weight:

Q 1 1 - the answer is 20

Q 1 2 - the answer is 20

Q 1 3 - the answer is 10

 

Sample Input 

 

3 3 
10 
20 
30 
1 2 
2 3 
1 3 
D 3 
Q 1 2 
Q 2 1 
D 2 
Q 3 2 
C 1 50
Q 1 1
E

3 3 
10 
20 
20 
1 2 
2 3 
1 3 
Q 1 1 
Q 1 2 
Q 1 3 
E 
0 0

 

Sample Output 

 

Case 1: 25.000000 
Case 2: 16.666667

有关数据结构有Treap树,并查集,同时离线算法的设计。

/*
* @author  Panoss
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<ctime>
#include<stack>
#include<queue>
#include<list>
using namespace std;
#define DBG 0
#define fori(i,a,b) for(int i = (a); i < (b); i++)
#define forie(i,a,b) for(int i = (a); i <= (b); i++)
#define ford(i,a,b) for(int i = (a); i > (b); i--)
#define forde(i,a,b) for(int i = (a); i >= (b); i--)
#define forls(i,a,b,n) for(int i = (a); i != (b); i = n[i])
#define mset(a,v) memset(a, v, sizeof(a))
#define mcpy(a,b) memcpy(a, b, sizeof(a))
#define dout  DBG && cerr << __LINE__ << " >>| "
#define checkv(x) dout << #x"=" << (x) << " | "<<endl
#define checka(array,a,b) if(DBG) { \
    dout << #array"[] | " << endl;     forie(i, a, b) cerr << "[" << i << "]=" << array[i] << " |" << ((i - (a)+1) % 5 ? " " : "\n"); if (((b)-(a)+1) % 5) cerr << endl; }
#define redata(T, x) T x; cin >> x
#define MIN_LD -2147483648
#define MAX_LD  2147483647
#define MIN_LLD -9223372036854775808
#define MAX_LLD  9223372036854775807
#define MAX_INF 18446744073709551615
inline int  reint() { int d; scanf("%d", &d); return d; }
inline long relong() { long l; scanf("%ld", &l); return l; }
inline char rechar() { scanf(" "); return getchar(); }
inline double redouble() { double d; scanf("%lf", &d); return d; }
inline string restring() { string s; cin >> s; return s; }

struct Treap_node
{
    int value, priority, s;         ///键值,优先级,总结点数(从根(包括根)开始往下算的结点个数)
    struct Treap_node * child[2];
    Treap_node(int v): value(v)
    {
        child[0] =  child[1] = NULL;
        priority = rand();
        s = 1;
    }
    bool operator < (const Treap_node & X) const
    {
        return priority < X.priority;
    }
    int compare(int v)
    {
        if(v == value) return -1;
        return v < value ? 0 : 1;
    }
    void updata()
    {
        s = 1;
        if(child[0]) s += child[0]->s;
        if(child[1]) s += child[1]->s;
    }
};

void Rotate(Treap_node* &root, int d)  ///0左旋(逆时针),1右旋(顺时针)
{
    Treap_node * k = root->child[d^1];
    root->child[d^1] = k->child[d];
    k->child[d] = root;
    root->updata();
    k->updata();
    root = k;
}

void Insert_node(Treap_node* &root, int v)
{
    if(!root)
    {
        root = new Treap_node(v);
    }
    else
    {
        int d = (v < root->value ? 0 : 1);     ///若允许有相同结点
        ///int d = root->compare(v);           ///若不允许有相同结点
        Insert_node(root->child[d], v);
        if(root->child[d] > root) Rotate(root, d^1);
    }
    root->updata();
}

void Remove_node(Treap_node * &root, int v)
{
    int d = root->compare(v);

    if(d == -1)
    {
        Treap_node * temp = root;

        if(root->child[0] && root->child[1])
        {
            int dir = root->child[0] > root->child[1] ? 1:0;
            Rotate(root, dir);
            Remove_node(root->child[dir], v);
        }
        else
        {
            if(!root->child[0]) root = root->child[1];
            else root = root->child[0];

            delete temp;
        }
    }
    else
    {
        Remove_node(root->child[d], v);
    }

    if(root) root->updata();
}

bool Find_node(Treap_node * root, int v)
{
    while(root)
    {
        int d = root->compare(v);
        if(d ==  -1) return true;
        else root = root->child[d];
    }
    return false;
}

const int MAXN = 20000 + 10;
const int MAXM = 60000 + 10;
const int MAXC = 400000 + 10;

struct Command
{
    char op;
    int x, p; ///p = k or v
};

Command cmd[MAXC];

int f[MAXN];
int Find(int x) {return f[x] == x? x : f[x] = Find(f[x]);}

int from[MAXM], to[MAXM], weight[MAXN];
bool removed[MAXM];

Treap_node * Tree[MAXN];

int K_th(Treap_node * root, int k)
{
    if(!root || k <= 0 || k > root->s) return 0;
    int s = (root->child[1]==NULL?0:root->child[1]->s);
    if(k == s+1) return root->value;
    else if(k <= s) return K_th(root->child[1],k);
    else return  K_th(root->child[0],k-s-1);
}

void Merge_Tree(Treap_node* &from_root, Treap_node * &to_root)
{
    if(from_root->child[0]) Merge_Tree(from_root->child[0],to_root);
    if(from_root->child[1]) Merge_Tree(from_root->child[1],to_root);
    Insert_node(to_root,from_root->value);
    delete from_root;
    from_root = NULL;
}

void Remove_Tree(Treap_node * &root)
{
    if(root->child[0]) Remove_Tree(root->child[0]);
    if(root->child[1]) Remove_Tree(root->child[1]);
    delete root;
    root = NULL;
}

void Add_Edge(int e)
{
    int u = Find(from[e]), v = Find(to[e]);
    if(u!=v)
    {
        if(Tree[u]->s < Tree[v]->s)
        {
            f[u] = v;
            Merge_Tree(Tree[u],Tree[v]);
        }
        else
        {
            f[v] = u;
            Merge_Tree(Tree[v],Tree[u]);
        }
    }
}

int query_cnt;
long long query_tot;

void Query(int x, int k)
{
    query_cnt ++;
    query_tot += K_th(Tree[Find(x)], k);
}

void Change_weight(int x, int v)
{
    int u = Find(x);
    Remove_node(Tree[u], weight[x]);
    Insert_node(Tree[u], v);
    weight[x] = v;///
}

int main()
{
    int Case = 0;
    int n,m;
    while(scanf("%d%d",&n,&m)==2&&(n+m))
    {
        Case ++;

        forie(i,1,n) scanf("%d",&weight[i]);
        forie(i,1,m) scanf("%d%d",&from[i],&to[i]);

        ///Init
        mset(removed,false);
        forie(i,1,n) f[i] = i;
        query_cnt = query_tot = 0;

        int c = 0;
        for(;;)
        {
            char op;
            int x , p = 0, v = 0;
            scanf(" %c",&op);
            if(op == E) break;
            scanf("%d",&x);
            if(op == D) removed[x] = true;
            if(op == Q) scanf("%d",&p);
            if(op == C)
            {
                scanf("%d",&v);
                p = weight[x];
                weight[x] = v;
            }
            cmd[++c] = (Command){op,x,p};
        }

        forie(i,1,n)
        {
            if(Tree[i]) Remove_Tree(Tree[i]);
            Tree[i] = new Treap_node(weight[i]);
        }

        forie(i,1,m)
            if(!removed[i]) Add_Edge(i);

        forde(i,c,1)
        {
            if(cmd[i].op == D) Add_Edge(cmd[i].x);
            if(cmd[i].op == Q) Query(cmd[i].x,cmd[i].p);
            if(cmd[i].op == C) Change_weight(cmd[i].x,cmd[i].p);
        }
        printf("Case %d: %.6lf\n",Case,query_tot/(double)query_cnt);
    }
    return 0;
}

 

LA 5031,布布扣,bubuko.com

LA 5031

原文:http://www.cnblogs.com/Panoss/p/3810243.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!