首页 > 其他 > 详细

ridge regression 无惩罚,导致预测结果空间过大而无实用价值

时间:2017-09-29 18:39:56      阅读:291      评论:0      收藏:0      [点我收藏+]

 

 

技术分享

 

 

 

技术分享

 

 

【 biased regression methods to reduce variance---通过偏回归来减小方差】

https://onlinecourses.science.psu.edu/stat857/node/137

  • Introducing biased regression methods to reduce variance
  • Implementation of Ridge and Lasso regression

 

https://onlinecourses.science.psu.edu/stat857/node/155

【无惩罚,导致预测结果空间过大而无实用价值】

【fitting the full model without penalization will result in large prediction intervals】

Motivation: too many predictors

  • It is not unusual to see the number of input variables greatly exceed the number of observations, e.g. micro-array data analysis, environmental pollution studies.

    • With many predictors, fitting the full model without penalization will result in large prediction intervals, and LS regression estimator may not uniquely exist.

 

技术分享

 

 

 

技术分享

 

 

https://gerardnico.com/wiki/data_mining/lasso

 

技术分享

 

ridge regression 无惩罚,导致预测结果空间过大而无实用价值

原文:http://www.cnblogs.com/yuanjiangw/p/7612063.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!