首页 > 其他 > 详细

[再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

时间:2014-06-27 10:57:16      阅读:387      评论:0      收藏:0      [点我收藏+]

$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq \sen{D^k f}_{L^p}\leq C2^{jk} \sen{f}_{L^p}; \eex$$ $$\bex \supp \hat u\subset \sed{|\xi|\leq 2^j} \ra \sen{f}_{L^q}\leq C2^{jn\sex{\frac{1}{p}-\frac{1}{q}}} \sen{f}_{L^p}\quad\sex{1\leq p\leq q\leq \infty}. \eex$$  see [D. Chae, J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, J. Differential Equations, 256 (2014), 3835--3858].  

[再寄小读者之数学篇](2014-06-23 Bernstein's inequality),布布扣,bubuko.com

[再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

原文:http://www.cnblogs.com/zhangzujin/p/3810873.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!