首页 > 其他 > 详细

图的存储形式——邻接表

时间:2014-06-27 10:30:37      阅读:417      评论:0      收藏:0      [点我收藏+]

邻接表:邻接表是图的一种链式存储结构。在邻接表中,对图中每个顶点建立一个单链表,第i个单链表中的节点表示依附于顶点vi的边(对有向图是以顶点vi为尾的弧)。每个结点有三个域组成,其中邻接点域指示与顶点vi邻接的点在途中的位置,链域指示下一条边或者弧的结点;数据域存储和边或者弧相关的信息,如权值等。每个链表上附设一个表头结点。在表头结点中,除了设置链域指向链表第一个结点之外,还设置有存储顶点vi的名。如下所示:

bubuko.com,布布扣

实现:

/**************************************
图的存储之邻接表
by Rowandjj
2014/6/23
**************************************/

#include<iostream>
using namespace std;

#define MAX_VERTEX_NUM 20//最大顶点数

typedef enum{DG,DN,AG,AN}GraphKind;//有向图、有向网、无向图、无向网
typedef struct _ARCNODE_//表节点(弧)
{
    int adjvex;//邻接点序号
    struct _ARCNODE_ *nextarc;//指向下一条弧
    int info;//信息(权值)  
}ArcNode;

typedef struct _VNODE_//头结点
{
    char data;//顶点名
    ArcNode *firstarc;//指向第一条弧
}VNode,AdjList[MAX_VERTEX_NUM];

typedef struct _ALGRAPH_//邻接表
{
    AdjList vertices;//邻接表
    int vexnum;//顶点数
    int arcnum;//弧数
    GraphKind kind;//图的种类
}ALGraph;

void (*VisitFunc)(char);  //全局函数指针 

bool visited[MAX_VERTEX_NUM]; /* 访问标志数组(全局量) */

void Visit(char p)
{
    cout<<p<<" ";
}
//-----------------操作-------------------------------------
int LocateVex(ALGraph G,char u);//若G中存在顶点u,则返回该顶点在图中位置;否则返回-1
bool CreateGraph(ALGraph* G);//采用邻接表存储结构,构造没有相关信息的图G(用一个函数构造4种图)
void DestroyGraph(ALGraph* G);//销毁图G
char GetVex(ALGraph G,int v);//通过序号v得到顶点名
bool PutVex(ALGraph* G,char v,char value);//对v赋新值value
int FirstAdjVex(ALGraph G,char v);//返回顶点v的第一个邻接顶点的序号
int NextAdjVex(ALGraph G,char v,char w);//返回v的(相对于w的)下一个邻接顶点的序号,若w是v的最后一个邻接点,则返回-1
void InsertVex(ALGraph* G,char v);//在图G中增添新顶点v(不增添与顶点相关的弧,留待InsertArc()去做)             
bool DeleteVex(ALGraph* G,char v);//删除G中顶点v及其相关的弧
bool InsertArc(ALGraph* G,char v,char w);//在G中增添弧<v,w>,若G是无向的,则还增添对称弧<w,v>
bool DeleteArc(ALGraph* G,char v,char w);//在G中删除弧<v,w>,若G是无向的,则还删除对称弧<w,v>
void DFSTravel(ALGraph* G,void (*Visit)(char));//深度优先
void DFS(ALGraph G,int v);
void BFSTravel(ALGraph G,void (*Visit)(char));//广度优先
void Display(ALGraph G);//打印图

//----------------辅助队列------------------------------------------
#define MAX_QUEUE_SIZE 20
typedef struct _QUEUENODE_
{
    int data;
    struct _QUEUENODE_ *next;
}QueueNode;
typedef struct _QUEUE_
{
    QueueNode *pHead;
    QueueNode *pTail;
    int size;
}Queue;

bool InitQueue(Queue *Q);
bool DestroyQueue(Queue *Q);
bool DeQueue(Queue *Q,int* e);
bool EnQueue(Queue *Q, int e);
bool QueueEmpty(Queue Q);
//------------------------------------------------------------------
bool InitQueue(Queue *Q)
{
    Q->pHead = Q->pTail = (QueueNode *)malloc(sizeof(QueueNode));
    if(!Q->pHead)
    {
        return false;
    }
    Q->pHead->next = NULL;
    Q->size = 0;
    return true;
}

bool EnQueue(Queue *Q, int e)
{
    QueueNode *node = (QueueNode*)malloc(sizeof(QueueNode));
    node->data = e;
    node->next = NULL;
    Q->pTail->next = node;
    Q->pTail = node;
    Q->size++;
    return true;
}

bool DeQueue(Queue *Q,int* e)
{
    QueueNode *node = Q->pHead->next;
    if(node)
    {
        *e = node->data;
        Q->pHead->next = node->next;
        if(Q->pTail == node)
        {
            Q->pTail = Q->pHead;
        }
        free(node);

        Q->size--;
    }
    return true;
}
bool QueueEmpty(Queue Q)
{
    return Q.size == 0;
}
bool DestroyQueue(Queue *Q)
{
    QueueNode *pTemp = Q->pHead->next;
    while(pTemp != NULL)
    {
        Q->pHead->next = pTemp->next;
        free(pTemp);
        pTemp = Q->pHead->next;
    }
    free(Q->pHead);
    Q->size = 0;
    return true;
}

//------------------------------------------------------------------
int LocateVex(ALGraph G,char u)
{
    int i;
    for(i = 0; i < G.vexnum; i++)
    {
        if(u == G.vertices[i].data)
        {
            return i;
        }
    }
    return -1;
}

bool CreateGraph(ALGraph* G)
{
    int i,j,k;
    int w;//权值
    char va,vb;//弧尾、弧头
    ArcNode *p;//弧

    cout<<"请输入图的类型(有向图:0,有向网:1,无向图:2,无向网:3): ";
    scanf("%d",&(*G).kind);
    cout<<"请输入图的顶点数,边数: ";
    cin>>G->vexnum;
    cin>>G->arcnum;

    cout<<"请输入顶点值:"<<endl;
    //构造顶点
    for(i = 0; i < G->vexnum; i++)
    {
        cin>>G->vertices[i].data;
        G->vertices[i].firstarc = NULL;
    }
    if(G->kind == 1 || G->kind == 3)//网
    {
        cout<<"请顺序输入每条弧(边)的权值、弧尾和弧头:\n";
    }else//图
    {
        cout<<"请顺序输入每条弧(边)的弧尾和弧头\n";
    }
    //构造表节点链表
    for(k = 0; k < G->arcnum; k++)
    {
        if(G->kind == 1 || G->kind == 3)//网
        {    
            cin>>w;
            cin>>va;
            cin>>vb;
        }else//图
        {
            cin>>va;
            cin>>vb;
        }
        //定位弧尾弧头的位置
        i = LocateVex(*G,va);
        j = LocateVex(*G,vb);
    
        p = (ArcNode *)malloc(sizeof(ArcNode));
        p->adjvex = j;
        
        if(G->kind == 1 || G->kind == 3)//网
        {
            p->info = w;//权值
        }else
        {
            p->info = NULL;
        }
        //插入表
        p->nextarc = G->vertices[i].firstarc;//插在表头
        G->vertices[i].firstarc = p;

        //如果是无向图或者无向网,还需要增加对称结点
        if(G->kind == 2 || G->kind == 3)
        {
            p = (ArcNode *)malloc(sizeof(ArcNode));
            p->adjvex = i;
            
            if(G->kind == 3)//若是无向网,还需要权值
            {
                p->info = w;
            }else
            {
                p->info = NULL;
            }
            
            //插入表
            p->nextarc = G->vertices[j].firstarc;
            G->vertices[j].firstarc = p;
        }
    }
    return true;
}

void Display(ALGraph G)
{
    ArcNode *p;
    int i;
    switch(G.kind)
    {
    case DG:
        cout<<"有向图";
        break;
    case AG:
        cout<<"无向图";
        break;
    case DN:
        cout<<"有向网";
        break;
    case AN:
        cout<<"无向网";
        break;
    default:
        break;
    }
    cout<<endl;
    cout<<"顶点:"<<endl;
    for(i = 0; i < G.vexnum; i++)
    {
        cout<<G.vertices[i].data<<" ";
    }
    cout<<endl;
    //边
    cout<<"边:"<<endl;
    for(i = 0; i < G.vexnum; i++)
    {
        p = G.vertices[i].firstarc;
        while(p)
        {
            if(G.kind == 0 || G.kind == 1)//有向
            {
                cout<<G.vertices[i].data<<" "<<G.vertices[p->adjvex].data;
                if(G.kind == 1)//有向网
                {
                    cout<<" "<<p->info;
                }

            }else//无向
            {
                if(i < p->adjvex)//不重复打印
                {
                    cout<<G.vertices[i].data<<" "<<G.vertices[p->adjvex].data;
                    if(G.kind == 3)//无向网
                    {
                        cout<<" "<<p->info;
                    }    
                }
            }
            cout<<endl;
            p = p->nextarc;
        }
    }

}
void DestroyGraph(ALGraph* G)
{
    ArcNode *p,*q;
    int i;
    
    for(i = 0; i < G->vexnum; i++)
    {
        p = G->vertices[i].firstarc;
        while(p)
        {
            q = p->nextarc;
            free(p);
            p = q;
        }
    }
    G->arcnum = 0;
    G->vexnum = 0;
}
char GetVex(ALGraph G,int v)
{
    if(v>=G.vexnum || v<0)
    {
        exit(0);
    }
    return G.vertices[v].data;
}
bool PutVex(ALGraph* G,char v,char value)
{
    int i = LocateVex(*G,v);
    if(i == -1)
    {
        return false;
    }
    G->vertices[i].data = value;

    return true;
}
int FirstAdjVex(ALGraph G,char v)
{
    int i = LocateVex(G,v);
    if(i < 0)
    {
        return -1;
    }
    ArcNode *arcNode = G.vertices[i].firstarc;
    if(arcNode == NULL)
    {
        return -1;
    }
    return arcNode->adjvex;
}
int NextAdjVex(ALGraph G,char v,char w)
{
    int i,j;
    i = LocateVex(G,v);
    j = LocateVex(G,w);
    ArcNode *p = G.vertices[i].firstarc;
    while(p && p->adjvex != j)
    {
        p = p->nextarc;
    }
    if(!p || !p->nextarc)//没找到w或w是最后一个邻接点
    {
        return -1;
    }
    else
    {
        return p->nextarc->adjvex;
    }
}
void InsertVex(ALGraph* G,char v)
{
    G->vertices[G->vexnum].data = v;
    G->vertices[G->vexnum].firstarc = NULL;

    G->vexnum++;
}
bool DeleteVex(ALGraph* G,char v)
{
    int i,j;
    ArcNode *p,*q;
    //1.删除邻接表中顶点为v的那一行所有数据,更改弧总数,顶点总数
    i = LocateVex(*G,v);
    if(i < 0 || i >= G->vexnum)//不合法的位置
    {
        return false;
    }
    p = G->vertices[i].firstarc;
    while(p)//依次删除弧
    {
        q = p->nextarc;
        free(p);
        p = q;
        G->arcnum--;
    }
    G->vexnum--;
    //2.更改顶点v之后的顶点在数组中的位置(前移一位)
    for(j = i; j < G->vexnum; j++)
    {
        G->vertices[j] = G->vertices[j+1];
    }
    //3.遍历剩下的邻接表,找到包含顶点v的弧或者边,删除之。另外需要注意,对遍历的每个弧/边,视情况更新序号
    for(j = 0; j < G->vexnum; j++)
    {
        p = G->vertices[j].firstarc;//p指向遍历的顶点的第一条弧或者边
        while(p)
        {
            if(p->adjvex == i)//如果找到指向已删除顶点的弧或者边
            {
                if(p == G->vertices[j].firstarc)//如果待删除的结点是第一个结点
                {
                    G->vertices[j].firstarc = p->nextarc;
                    free(p);
                    p = G->vertices[j].firstarc;
                    if(G->kind <= 1)//如果是有向的,则还需更改弧数
                    {
                        G->arcnum--;
                    }
                }else//不是第一个结点
                {
                    q->nextarc = p->nextarc;
                    free(p);
                    p = q->nextarc;
                    if(G->kind <= 1)//如果是有向的,则还需更改弧数
                    {
                        G->arcnum--;
                    }
                }
            }else//如果当前弧并不是要找的弧,那么继续向后遍历
            {
                if(p->adjvex > i)//(很关键)更新序号
                {
                    p->adjvex--;
                }
                q = p;
                p = p->nextarc;//指向下一条弧
            }
        }
    }
    return true;
}
bool InsertArc(ALGraph* G,char v,char w)
{
    int i,j,weight;
    ArcNode *arcNode;
    //1.得到v、w的在邻接表中的序号
    i = LocateVex(*G,v);
    j = LocateVex(*G,w);
    if(i<0 || j<0)
    {
        return false;
    }
    G->arcnum++;
    if(G->kind == 1 || G->kind == 3)
    {
        cout<<"输入权值:";
        cin>>weight;//输入权值
    }

    //2.生成一个弧结点,插入到顶点v的第一个邻接点的位置(如果是网的话,需要用户输入权值)
    arcNode = (ArcNode*)malloc(sizeof(ArcNode));
    arcNode->adjvex = j;
    if(G->kind == 1 || G->kind == 3)
    {
        arcNode->info = weight;
    }
    else
    {
        arcNode->info = NULL;
    }
    
    arcNode->nextarc = G->vertices[i].firstarc;
    G->vertices[i].firstarc = arcNode;
    //3.如果是无向的,那么还需生成对称节点,并插到合适位置
    if(G->kind >= 2)
    {
        arcNode = (ArcNode *)malloc(sizeof(ArcNode));
        arcNode->adjvex = i;
        if(G->kind == 3)//无向网
        {
            arcNode->info = weight;
        }
        else
        {
            arcNode->info = NULL;
        }
        arcNode->nextarc = G->vertices[j].firstarc;
        G->vertices[j].firstarc = arcNode;
    }    

    return true;
}
bool DeleteArc(ALGraph* G,char v,char w)
{
    int i,j;
    ArcNode *p,*q;
    //1.得到v、w的在邻接表中的序号
    i = LocateVex(*G,v);
    j = LocateVex(*G,w);
    if(i < 0 || j < 0)
    {
        return false;
    }
    //2.删除v-w
    p = G->vertices[i].firstarc;
    while(p && p->adjvex!=j)
    {
        q = p;
        p = p->nextarc;
    }
    if(p && p->adjvex==j)//找到弧<v-w>
    {
        if(p == G->vertices[i].firstarc)//p指的是第一条弧
        {
            G->vertices[i].firstarc = p->nextarc;
        }
        else
        {
            q->nextarc = p->nextarc;
        }
        free(p);
        G->arcnum--;
    }

    //3.若是无向,则还删除w-v
    if(G->kind >= 2)
    {
        p = G->vertices[j].firstarc;
        while(p && p->adjvex!=i)
        {
            q = p;
            p = p->nextarc;
        }
        if(p && p->adjvex==i)//找到弧<w-v>
        {
            if(p == G->vertices[j].firstarc)//p指的是第一条弧
            {
                G->vertices[j].firstarc = p->nextarc;
            }
            else
            {
                q->nextarc = p->nextarc;
            }
            free(p);
        }
    }
    return true;
}
void DFSTravel(ALGraph* G,void (*Visit)(char))
{
    int i;
    VisitFunc = Visit;
    for(i = 0; i < G->vexnum; i++)
    {
        visited[i] = false;
    }
    for(i = 0; i < G->vexnum; i++)
    {
        if(!visited[i])
        {
            DFS(*G,i);
        }
    }
    cout<<endl;
}
void DFS(ALGraph G,int v)
{
    int i;
    char v1,w1;
    v1 = GetVex(G,v);
    visited[v] = true;
    VisitFunc(G.vertices[v].data);

    for(i = FirstAdjVex(G,v1);i>=0; i = NextAdjVex(G,v1,w1 = GetVex(G,i)))
    {
        if(!visited[i])
        {
            DFS(G,i);
        }
    }
}
void BFSTravel(ALGraph G,void (*Visit)(char))
{
    Queue q;
    InitQueue(&q);
    char w1,u1;
    int i,u,w;
    for(i = 0; i < G.vexnum; i++)
    {
        visited[i] = false;
    }
    
    for(i = 0; i < G.vexnum; i++)
    {
        if(!visited[i])
        {
            visited[i] = true;
            Visit(G.vertices[i].data);
            EnQueue(&q,i);
            
            while(!QueueEmpty(q))
            {
                DeQueue(&q,&u);
                u1 = GetVex(G,u);
                for(w = FirstAdjVex(G,u1);w>=0;w = NextAdjVex(G,u1,w1=GetVex(G,w)))
                {
                    if(!visited[w])
                    {
                        visited[w] = true;
                        Visit(G.vertices[w].data);
                        EnQueue(&q,w);
                    }
                    
                }
            }
        }
    }
    DestroyQueue(&q);
    cout<<endl;
}
int main()
{
    
    ALGraph graph;
    CreateGraph(&graph);
    Display(graph);
    
    cout<<"深度优先:"<<endl;
    DFSTravel(&graph,Visit);
    cout<<"广度优先:"<<endl;
    BFSTravel(graph,Visit);
    DestroyGraph(&graph);
    
    return 0;
}

测试:
考虑以下有向图:
bubuko.com,布布扣

bubuko.com,布布扣




图的存储形式——邻接表,布布扣,bubuko.com

图的存储形式——邻接表

原文:http://blog.csdn.net/chdjj/article/details/34833155

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!