首页 > 其他 > 详细

Leetcode: Search for a Range

时间:2014-06-27 22:25:32      阅读:391      评论:0      收藏:0      [点我收藏+]
Given a sorted array of integers, find the starting and ending position of a given target value.

Your algorithms runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].

Analysis: 这道题是二分查找Search Insert Position的变体,思路并不复杂,就是先用二分查找找到其中一个target,然后再往左右找到target的边缘。找边缘的方法跟二分查找仍然是一样的,只是相等的情况依然要往左找(找左边缘)或往右找(找右边缘)。这样下来总共进行了三次二分查找,所以算法的时间复杂度仍是O(logn),空间复杂度是O(1)。

Notice: 对停止的边界条件极不熟悉,需要总结,参见Binary Search的Summary

 1 public class Solution {
 2     public int[] searchRange(int[] A, int target) {
 3         int start = 0, end = A.length - 1;
 4         int[] result = new int[2];
 5         result[0] = -1;
 6         result[1] = -1;
 7         if(A==null || A.length==0)
 8         {
 9             return result;
10         }
11         int middle = search(A, start, end, target, result);
12         if (middle == -1) return result;
13         result[0] = searchleft(A, 0, middle, target);
14         result[1] = searchright(A, middle, A.length-1, target);
15         return result;
16     }
17     
18     public int search(int[] A, int start, int end, int target, int[] result) {
19         int mid = -1;
20         if (start <= end) {
21             mid = (start + end) / 2;
22             if (A[mid] == target) {
23                 result[0] = mid;
24                 result[1] = mid;
25                 return mid;
26             }
27             else if (A[mid] < target) {
28                 start = mid + 1;
29                 return search(A, start, end, target, result);
30             }
31             else {
32                 end = mid - 1;
33                 return search(A, start, end, target, result);
34             }
35         }
36         else {
37             result[0] = -1;
38             result[1] = -1;
39             return mid;
40         }
41         
42     }
43     
44     public int searchleft(int[] A, int start, int end, int target) {
45         if (start > end) return start;
46         int mid = (start + end) / 2;
47         if (A[mid] < target) {
48             start = mid + 1;
49             return searchleft(A, start, end, target);
50         }
51         else {
52             end = mid - 1;
53             return searchleft(A, start, end, target);
54         }
55     }
56     
57     public int searchright(int[] A, int start, int end, int target) {
58         if (start > end) return end;
59         int mid = (start + end) / 2;
60         if (A[mid] <= target) {
61             start = mid + 1;
62             return searchright(A, start, end, target);
63         }
64         else {
65             end = mid - 1;
66             return searchright(A, start, end, target);
67         }
68     }
69 }

如果找到target元素之后寻找边界,搜索范围过大,可以把搜索范围缩小到找到target之前最近一次(start, end)区间内,如下:

 1 public class Solution {
 2     public int[] searchRange(int[] A, int target) {
 3         int start = 0, end = A.length - 1;
 4         int[] result = new int[2];
 5         result[0] = -1;
 6         result[1] = -1;
 7         if(A==null || A.length==0)
 8         {
 9             return result;
10         }
11         int[] range = new int[2];
12         int middle = search(A, start, end, target, range);
13         if (middle == -1) return result;
14         result[0] = searchleft(A, range[0], middle, target);
15         result[1] = searchright(A, middle, range[1], target);
16         return result;
17     }
18     
19     public int search(int[] A, int start, int end, int target, int[] range) {
20         range[0] = start;
21         range[1] = end;
22         int mid = -1;
23         if (start <= end) {
24             mid = (start + end) / 2;
25             if (A[mid] == target) {
26                 return mid;
27             }
28             else if (A[mid] < target) {
29                 start = mid + 1;
30                 return search(A, start, end, target, range);
31             }
32             else {
33                 end = mid - 1;
34                 return search(A, start, end, target, range);
35             }
36         }
37         else {
38             return mid;
39         }
40         
41     }
42     
43     public int searchleft(int[] A, int start, int end, int target) {
44         if (start > end) return start;
45         int mid = (start + end) / 2;
46         if (A[mid] < target) {
47             start = mid + 1;
48             return searchleft(A, start, end, target);
49         }
50         else {
51             end = mid - 1;
52             return searchleft(A, start, end, target);
53         }
54     }
55     
56     public int searchright(int[] A, int start, int end, int target) {
57         if (start > end) return end;
58         int mid = (start + end) / 2;
59         if (A[mid] <= target) {
60             start = mid + 1;
61             return searchright(A, start, end, target);
62         }
63         else {
64             end = mid - 1;
65             return searchright(A, start, end, target);
66         }
67     }
68 }

如果想用iterative的方法来写:

 1 public class Solution {
 2     public int[] searchRange(int[] A, int target) {
 3         int[] res = new int[2];
 4         res[0] = -1;
 5         res[1] = -1;
 6         if(A==null || A.length==0)
 7         {
 8             return res;
 9         }
10         int l=0;
11         int r=A.length-1;
12         int m=(l+r)/2;
13         while(l<=r)
14         {
15             m=(l+r)/2;
16             if(A[m]==target)
17             {
18                 res[0]=m;
19                 res[1]=m;
20                 break;
21             }
22             else if(A[m]>target)
23             {
24                 r = m-1;
25             }
26             else
27             {
28                 l = m+1;
29             }
30         }
31         if(A[m]!=target)
32             return res;
33         int newL = m;
34         int newR = A.length-1;
35         while(newL<=newR)
36         {
37             int newM=(newL+newR)/2;
38             if(A[newM]==target)
39             {
40                 newL = newM+1;
41             }
42             else
43             {
44                 newR = newM-1;
45             }            
46         }
47         res[1]=newR;
48         newL = 0;
49         newR = m;
50         while(newL<=newR)
51         {
52             int newM=(newL+newR)/2;
53             if(A[newM]==target)
54             {
55                 newR = newM-1;
56             }
57             else
58             {
59                 newL = newM+1;
60             }            
61         }
62         res[0]=newL;        
63         
64         return res;
65         
66     }
67 }

 

Leetcode: Search for a Range,布布扣,bubuko.com

Leetcode: Search for a Range

原文:http://www.cnblogs.com/EdwardLiu/p/3811193.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!