题目大意:给出一个n*n的图,表示一张纸板,问有多少种方法做成风筝,风筝必须是正方形或者是菱形,并且不能有洞。
解题思路:分正方形和菱形两种情况讨论:
正方形,dp[i][j]表示以i,j为右下角的正方形
dp[i][j]=min(dp[i?1][j],dp[i][j?1])
并且如果黄色部分也为‘x‘的话,dp[i][j]++
菱形,dp[i][j]表示菱形的正下角
同样地市黄色部分如果为’x‘的话,dp[i][j]++
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 505;
int n, dp[N][N];
char g[N][N];
int solve () {
int ans = 0;
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (g[i][j] == ‘x‘) {
int tmp = min(dp[i-1][j], dp[i][j-1]);
dp[i][j] = tmp + (g[i-tmp][j-tmp] == ‘x‘);
if (dp[i][j] > 1)
ans += dp[i][j] - 1;
}
}
}
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (g[i][j] == ‘x‘) {
int tmp = min(dp[i-1][j-1], dp[i-1][j+1]);
if (tmp == 0 || g[i-1][j] != ‘x‘)
dp[i][j] = 1;
else if (g[i-tmp*2][j] == ‘x‘ && g[i-tmp*2+1][j] == ‘x‘)
dp[i][j] = tmp + 1;
else
dp[i][j] = tmp;
if (dp[i][j] > 1)
ans += dp[i][j] - 1;
}
}
}
return ans;
}
int main () {
while (scanf("%d%*c", &n) == 1 && n) {
for (int i = 1; i <= n; i++)
gets(g[i]+1);
printf("%d\n", solve());
}
return 0;
}
uva 10593 - Kites(dp),布布扣,bubuko.com
原文:http://blog.csdn.net/keshuai19940722/article/details/35285669