<pre name="code" class="cpp">#define MEM_ALIGNMENT 4 //对齐方式为4字节对齐 #ifndef LWIP_MEM_ALIGN_SIZE #define LWIP_MEM_ALIGN_SIZE(size) (((size) + MEM_ALIGNMENT - 1) & ~(MEM_ALIGNMENT-1)) //实现待分配数据空间的内存对齐 #endif #ifndef LWIP_MEM_ALIGN //地址对齐,对齐方式也为4字节对齐 #define LWIP_MEM_ALIGN(addr) ((void *)(((mem_ptr_t)(addr) + MEM_ALIGNMENT - 1) & ~(mem_ptr_t)(MEM_ALIGNMENT-1))) #endif /* MEM_SIZE: the size of the heap memory. If the application will send a lot of data that needs to be copied, this should be set high. */ #define MEM_SIZE (8*1024) //堆的总空间大小,此后在这个基础上划分堆,将在这个空间进行内存分配,内存块结构体和数据都是在这个空间上的 //mem为内存块的结构体,next;,prev都为内存块索引 struct mem { /** index (-> ram[next]) of the next struct */ //ram为堆的首地址,相当于数组的首地址,索引基地址 mem_size_t next; //next为下一个内存块的索引 /** index (-> ram[next]) of the next struct */ mem_size_t prev; //prev为前一个内存块的索引 /** 1: this area is used; 0: this area is unused */ u8_t used; //标志此内存块已被分配 }; static struct mem *ram_end; /** All allocated blocks will be MIN_SIZE bytes big, at least! * MIN_SIZE can be overridden to suit your needs. Smaller values save space, * larger values could prevent too small blocks to fragment the RAM too much. */ #ifndef MIN_SIZE #define MIN_SIZE 12 //内存块大小的最小限制,不能小于12 #endif /* MIN_SIZE */ /* some alignment macros: we define them here for better source code layout */ #define MIN_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MIN_SIZE) //将MIN_SIZE按4字节对齐,即把12按4字节对齐 #define SIZEOF_STRUCT_MEM LWIP_MEM_ALIGN_SIZE(sizeof(struct mem)) //将mem大小按4字节对齐 #define MEM_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MEM_SIZE) //将堆的总空间按4字节对齐,MEM_SIZE在前面,为8*1024 //内存对齐解释看我的博文:http://blog.csdn.net/lg2lh/article/details/34853883 /** the heap. we need one struct mem at the end and some room for alignment */ static u8_t ram_heap[MEM_SIZE_ALIGNED + (2*SIZEOF_STRUCT_MEM) + MEM_ALIGNMENT]; //实际开的堆内存空间,MEM_SIZE_ALIGNED为对齐后的数据空间为8192 //堆内存的大小为MEM_SIZE_ALIGNED+(2*SIZEOF_STRUCT_MEM)+MEM_ALIGNMENT=8192+2*MEN结构体的大小+4 void mem_init(void) { struct mem *mem; //定义一个mem结构体指针变量 LWIP_ASSERT("Sanity check alignment", (SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT-1)) == 0); /* align the heap */ ram = LWIP_MEM_ALIGN(ram_heap); //将堆空间首地址ram_heap按4字节地址对齐 /* initialize the start of the heap */ mem = (struct mem *)ram; //将堆空间ram 首地址强制转换成mem结构体类型,作为首个内存块,但这个内存块还未使用 mem->next = MEM_SIZE_ALIGNED; //把首个内存块的next指针指向了堆空间的最后一个地址(MEM_SIZE_ALIGNED为8*1024),后面实际在mem_malloc时会动态调整next索引, //从而得到实际分配内存空间即为 mem->next减去该内存块mem的地址 //待分配内存块的next索引总是指向堆空间最后,好像也不一定,但是按照思路是这样的。 mem->prev = 0; //初始化,因为是第一个内存块,所以前一个内存块不存在,故初始化为0 mem->used = 0; //该内存块没有被分配,待分配状态 /* initialize the end of the heap */ ram_end = (struct mem *)&ram[MEM_SIZE_ALIGNED]; //例化一个堆空间末尾内存块,该内存块指向最后一个地址,标志结尾用的已被分配,不可再分配了 ram_end->used = 1; //该内存块已被分配 ram_end->next = MEM_SIZE_ALIGNED; //因为后续再无内存块故,next索引指向最后,即自己 ram_end->prev = MEM_SIZE_ALIGNED; //这个我也不知道啊 mem_sem = sys_sem_new(1); /* initialize the lowest-free pointer to the start of the heap */ lfree = (struct mem *)ram; //初始化空闲对指针,此时首个内存块是空闲的 MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED); } void * mem_malloc(mem_size_t size) { mem_size_t ptr, ptr2; struct mem *mem, *mem2; #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT u8_t local_mem_free_count = 0; #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ LWIP_MEM_ALLOC_DECL_PROTECT(); if (size == 0) { return NULL; } //size为0的话返回null 分配不成功 /* Expand the size of the allocated memory region so that we can adjust for alignment. */ size = LWIP_MEM_ALIGN_SIZE(size); //将待分配数据按4字节进行对齐 if(size < MIN_SIZE_ALIGNED) { //如果待分配空间小于MIN_SIZE_ALIGNED(12),则返回分配空间也要为12,最小分配空间为12 /* every data block must be at least MIN_SIZE_ALIGNED long */ size = MIN_SIZE_ALIGNED; } if (size > MEM_SIZE_ALIGNED) { //如果待分配空间大于MEM_SIZE_ALIGNED(8*1024),超出堆空间,则返回NULL,无法分配 return NULL; } /* protect the heap from concurrent access */ sys_arch_sem_wait(mem_sem, 0); LWIP_MEM_ALLOC_PROTECT(); //未定义 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT /* run as long as a mem_free disturbed mem_malloc */ do { local_mem_free_count = 0; #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ /* Scan through the heap searching for a free block that is big enough, * beginning with the lowest free block. */ //ptr初值=空闲内存块地址与堆内存首地址之差,如果ptr+size小于堆空间总大小8*1024,则可实现相应大小 //的内存块分配,其中ptr实际为已分配了的空间大小,size为待分配的空间大小,两个和一定要小于总空间,才可以实现分配. //判断完成后,将ptr赋值为该内存块next所指地址 for (ptr = (u8_t *)lfree - ram; ptr < MEM_SIZE_ALIGNED - size; ptr = ((struct mem *)&ram[ptr])->next) { //将待分配的这个内存空间初始化为内存块结构体 mem = (struct mem *)&ram[ptr]; #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT //未定义 mem_free_count = 0; LWIP_MEM_ALLOC_UNPROTECT(); /* allow mem_free to run */ LWIP_MEM_ALLOC_PROTECT(); if (mem_free_count != 0) { local_mem_free_count = mem_free_count; } mem_free_count = 0; #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ //ptr为已分配了的内存空间 //后面你会发现,待分配内存块的mem->next始终指向堆空间的最后,即MEM_SIZE_ALIGNED。 //内存块未被使用,此时mem为待分配内存块,故mem->next指向MEM_SIZE_ALIGNED, //剩余分配空间(MEM_SIZE_ALIGNED-已分配空间-MEM结构体大小)要大于要待分配空间size if ((!mem->used) && (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) { /* mem is not used and at least perfect fit is possible: * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */ //剩余分配空间(MEM_SIZE_ALIGNED-已分配空间-2*MEM结构体大小-12) //要大于要待分配空间size,则才可以进行内存分配。 if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) { /* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem') * -> split large block, create empty remainder, * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size, * struct mem would fit in but no data between mem2 and mem2->next * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty * region that couldn't hold data, but when mem->next gets freed, * the 2 regions would be combined, resulting in more free memory */ //ptr2指向新的待分配内存空间 ptr2 = ptr + SIZEOF_STRUCT_MEM + size; /* create mem2 struct */ //mem2为新的待分配内存块结构体 mem2 = (struct mem *)&ram[ptr2]; //新的内存块mem2未被使用 mem2->used = 0; //新的待分配的内存块mem2的next索引指向堆空间的最后,即MEM_SIZE_ALIGNED mem2->next = mem->next; //而新的内存块的prev索引是我们这次正在分配的模块索引,即ptr mem2->prev = ptr; /* and insert it between mem and mem->next */ //把本次分配的mem内存块的next索引重新定位,指向新的待分配的模块的索引,不再指向堆空间最后 mem->next = ptr2; mem->used = 1;//本内存块被使用 //我之前分析的都是新的待分配内存块next索引应该始终指向堆空间最后的,这里竟然判断了,可能存在不指向最后的情况 //具体原因还没分析。如果新的待分配内存块mem2的next索引未指向最后,则需要将它所指向的索引内存块的prev索引指向 //他自己ptr2。 if (mem2->next != MEM_SIZE_ALIGNED) { ((struct mem *)&ram[mem2->next])->prev = ptr2; } MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM)); } else {//如果没有满足对应if条件,则直接分配完改内存块即可,也不用指向下一个待分配的内存块,因为没有空间可以再分配了 /* (a mem2 struct does no fit into the user data space of mem and mem->next will always * be used at this point: if not we have 2 unused structs in a row, plug_holes should have * take care of this). * -> near fit or excact fit: do not split, no mem2 creation * also can't move mem->next directly behind mem, since mem->next * will always be used at this point! */ mem->used = 1; MEM_STATS_INC_USED(used, mem->next - ((u8_t *)mem - ram)); } if (mem == lfree) {//将空闲指针索引指向新的待分配内存块索引ram[lfree->next],即ptr2 /* Find next free block after mem and update lowest free pointer */ while (lfree->used && lfree != ram_end) { LWIP_MEM_ALLOC_UNPROTECT(); /* prevent high interrupt latency... */ LWIP_MEM_ALLOC_PROTECT(); lfree = (struct mem *)&ram[lfree->next]; } LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used))); } LWIP_MEM_ALLOC_UNPROTECT(); sys_sem_signal(mem_sem); LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.", (mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end); LWIP_ASSERT("mem_malloc: allocated memory properly aligned.", ((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0); LWIP_ASSERT("mem_malloc: sanity check alignment", (((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0); return (u8_t *)mem + SIZEOF_STRUCT_MEM;//返回分配结果,即已分配内存块数据空间的首地址。 } } #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT /* if we got interrupted by a mem_free, try again */ } while(local_mem_free_count != 0); #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ LWIP_DEBUGF(MEM_DEBUG | 2, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size)); MEM_STATS_INC(err); LWIP_MEM_ALLOC_UNPROTECT(); sys_sem_signal(mem_sem); return NULL; }
lwip—mem_init和mem_malloc详解,布布扣,bubuko.com
原文:http://blog.csdn.net/lg2lh/article/details/35222195