首页 > 编程语言 > 详细

c++ 依据输入动态声明数组(一维,二维)

时间:2014-07-07 23:51:46      阅读:660      评论:0      收藏:0      [点我收藏+]

较早的编译器是不同意这样做的,所以一些书籍比方以Tc解说的书本都说数组的下标不能是变量。在vc6.0下亦是如此。

只是在一些较新的编译器如dev c++已经支持了,例如以下代码不会报错
#include <stdio.h>
#include <stdlib.h>
int main()
{
int a; int i;
scanf("%d",&a);
int c[a];
for( i =0 ;i<a;i++)
scanf("%d",&c[i]);
for( i =0 ;i<a;i++)
printf("%d",c[i]);
}

这个和编译器有关,应该是设计到一些标准规范为题吧,不妨不要这样写~使用动态分配内存是比較把握和通用的

一维:
cin>>n;

int* a=new int[n];

   if ((a) == NULL)

     {}//确保没有动态分配失败

可是new出来的一定不要忘了delete掉
delete []a; // 正确的使用方法
delete a; // 错误的使用方法
后者相当于delete a[0],漏掉了另外n-1个对象。

二维:
设有m行n列
cin>>m>>n;
int **a = new int* [m];
for(int i = 0; i < m; i++)
a[i] = new int [n];
PS:就相当于产生了一个二维数组a[m][n]了,可是对于我们平时声明的数组a[m][n],a[i][j]=a[i*n+j],由于是连续的一片内存,而这样动态声明的数组随意的a[k]都是一个int*类型,即一个地址了,所以仅仅能a[i][j]或者*(*(a+i)+j)来訪问数组的元素,而不能a[i*n+j]这样转换着用了

释放内存:
for(int i = 0; i < m; ++i)
delete []a[i];
delete []a;

PS:事实上对于c++,我们全然能够充分利用它自己强大而方便的容器,比方vector,之所以动态声明数组,相比是大小不确定,声明太大了怕浪费空间,而vector就不用指定大小,当存的数据变多,自己主动扩大容量,比方如果vector默认大小是8,当你再往里存第9个元素时,容器自己主动扩容,变为16,16再不够用,扩为32,2倍2倍的增长,这样就依据须要扩容,不会浪费空间,也能够像普通数组那样直接指定vector的大小,总之普通数组能够的它都能够,普通数组没有的它更有;
一维:
vector<int> a;
a.push_back(k);
k为待存入数组的数,使用方法一样,能够a[i]这样直接取数,还有各种自带的方法,使用方便极了
vector<int> a;
vector<int> a(5); //指定数组大小是5
vector<int> a(5,3); //数组大小为5,并初始化数组全部元素值为3
二维:
cin>>m>>n;//m行n列
vector<vector<int> > a(m, vector<int>(n));
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
a[i][j] = i*j;
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
cout<<a[i][j]<<‘ ‘;

cout<<endl;


转自;http://hi.baidu.com/zf2650/blog/item/1cac0e12f87e5f095baf53e7.html


-------------------------------------------------------------------------------------

今天归纳总结了一下,希望以后的朋友能够少走些弯路

一 :关于指针和堆的内存分配

先来介绍一下指针 : 指针一种类型,理论上来说它包括其它变量的地址,因此有的书上也叫它:地址变量。既然指针是一个类型,是类型就有大小,在达内的server上或者普通的PC机上,都是4个字节大小,里边仅仅是存储了一个变量的地址而已。无论什么类型的指针,char * ,int * ,int (*) ,string * ,float * ,都是说明了本指针所指向的地址空间是什么类型而已,了解了这个基本上全部的问题都好象都变的合理了。

在C++中,申请和释放堆中分配的存贮空间,分别使用new和delete的两个运算符来完毕:
指针类型 指针变量名=new 指针类型 (初始化);
delete 指针名;
比如:1、 int *p=new int(0);
它与下列代码序列大体等价:
2、int tmp=0, *p=&tmp;
差别:p所指向的变量是由库操作符new()分配的,位于内存的堆区中,而且该对象未命名。
  
以下是关于new 操作的说明 : 部分引自<<C++面向对象开发>>
1、new运算符返回的是一个指向所分配类型变量(对象)的指针。对所创建的变量或对象,都是通过该指针来间接操作的,而动态创建的对象本身没有名字。
2、一般定义变量和对象时要用标识符命名,称命名对象,而动态的称无名对象(请注意与栈区中的暂时对象的差别,两者全然不同:生命期不同,操作方法不同,暂时变量对程序猿是透明的)。
3、堆区是不会在分配时做自己主动初始化的(包含清零),所以必须用初始化式(initializer)来显式初始化。new表达式的操作序列例如以下:从堆区分配对象,然后用括号里的值初始化该对象。

以下是从堆中申请数组

1、申请数组空间:
指针变量名=new 类型名[下标表达式];
注意:“下标表达式”不是常量表达式,即它的值不必在编译时确定,可以在执行时确定。这就是堆的一个很显著的特点,有的时候程序猿本身都不知道要申请可以多少内存的时候,堆就变的格外实用。
2、释放数组空间:
delete [ ]指向该数组的指针变量名;
注意:方括号非常重要的,假设delete语句中少了方括号,因编译器觉得该指针是指向数组第一个元素的,会产生回收不彻底的问题(仅仅回收了第一个元素所占空间),我们通常叫它“内存泄露”,加了方括号后就转化为指向数组的指针,回收整个数组。delete [ ]的方括号里不须要填数组元素数,系统自知。即使写了,编译器也忽略。<<Think in c++>>上说过曾经的delete []方括号里是必须加入个数的,后来因为非常easy出错,所以后来的版本号就改进了这个缺陷。
以下是个样例,VC上编译通过
#include<iostream>
using namespace std;
//#include <iostream.h>  //for VC
#include <string.h>
void main(){
int n;
char *p;
cout<<"请输入动态数组的元素个数"<<endl;
cin>>n; //n在执行时确定,可输入17
p=new char[n]; //申请17个字符(可装8个汉字和一个结束符)的内存空间strcpy(pc,“堆内存的动态分配”);//
cout<<p<<endl;
delete []p;//释放pc所指向的n个字符的内存空间return ; }


通过指针使堆空间,编程中的几个可能问题

1.动态分配失败。

返回一个空指针(NULL),表示发生了异常,堆资源不足,分配失败。

data = new double [m]; //申请空间
if ((data ) == 0)…… //或者==NULL


2.指针删除与堆空间释放。

删除一个指针p(delete p;)实际意思是删除了p所指的目标(变量或对象等),释放了它所占的堆空间,而不是删除p本身,释放堆空间后,p成了空悬指针,不能再通过p使用该空间,在又一次给p赋值前,也不能再直接使用p。


3.内存泄漏(memory leak)和反复释放。

new与delete 是配对使用的, delete仅仅能释放堆空间。假设new返回的指针值丢失,则所分配的堆空间无法回收,称内存泄漏,同一空间反复释放也是危急的,由于该空间可能已另分配,而这个时候又去释放的话,会导致一个非常难查出来的执行时错误。所以必须妥善保存new返回的指针,以保证不发生内存泄漏,也必须保证不会反复释放堆内存空间。


4.动态分配的变量或对象的生命期。

无名变量的生命期并不依赖于建立它的作用域,比方在函数中建立的动态对象在函数返回后仍可使用。我们也称堆空间为自由空间(free store)就是这个原因。但必须记住释放该对象所占堆空间,并仅仅能释放一次,在函数内建立,而在函数外释放是一件非常easy失控的事,往往会出错,所以永远不要在函数体内申请空间,让调用者释放,这是一个非常差的做法。你再怎么小心翼翼也可能会带来错误。
类在堆中申请内存 :
通过new建立的对象要调用构造函数,通过deletee删除对象要调用析构函数。
CGoods *pc;
pc=new CGoods; //分配堆空间,并构造一个无名对象
//的CGoods对象;
…….
delete pc; //先析构,然后将内存空间返回给堆; 堆对象的生命期并不依赖于建立它的作用域,所以除非程序结束,堆对象(无名对象)的生命期不会到期,而且须要显式地用delete语句析构堆对象,上面的堆对象在运行delete语句时,C++自己主动调用其析构函数。
正由于构造函数能够有參数,所以new后面类(class)类型也能够有參数。这些參数即构造函数的參数。
但对创建数组,则无參数,并仅仅调用缺省的构造函数。见下例类说明:

class CGoods{
char Name[21];
int Amount;
float Price;
float Total_value;
public:
CGoods(){}; //缺省构造函数。因已有其它构造函数,系统不会再自己主动生成缺省构造,必须显式声明。 CGoods(char* name,int amount ,float price){
strcpy(Name,name);
Amount=amount;
Price=price;
Total_value=price*amount;  }
……};//类声明结束
以下是调用机制 :

void main(){
int n;
CGoods *pc,*pc1,*pc2;
pc=new CGoods(“hello”,10,118000);
//调用三參数构造函数 pc1=new CGoods(); //调用缺省构造函数 cout<<”输入商品类数组元素数”<<endl;
cin>>n;
pc2=new CGoods[n];
//动态建立数组,不能初始化,调用n次缺省构造函数
……
delete pc;
delete pc1;
delete []pc2; }

申请堆空间之后构造函数执行;
释放堆空间之前析构函数执行;
再次强调:由堆区创建对象数组,仅仅能调用缺省的构造函数,不能调用其它不论什么构造函数。假设没有缺省的构造函数,则不能创建对象数组。



---------------------以下我们再来看一下指针数组和数组指针―――――――――――――
假设你想了解指针最好理解下面的公式 :
(1)int*ptr;//指针所指向的类型是int

  (2)char*ptr;//指针所指向的的类型是char

  (3)int**ptr;//指针所指向的的类型是int* (也就是一个int * 型指针)

  (4)int(*ptr)[3];//指针所指向的的类型是int()[3] //二维指针的声明

(1)指针数组:一个数组里存放的都是同一个类型的指针,通常我们把他叫做指针数组。

比方 int * a[10];它里边放了10个int * 型变量,因为它是一个数组,已经在栈区分配了10个(int * )的空间,也就是32位机上是40个byte,每个空间都能够存放一个int型变量的地址,这个时候你能够为这个数组的每个元素初始化,在,或者单独做个循环去初始化它。

样例:
int * a[2]={ new int(3),new int(4) }; //在栈区里声明一个int * 数组,它的每个元素都在堆区里申请了一个无名变量,并初始化他们为3和4,注意此种声明方式具有缺陷,VC下会报错
比如 :
int * a[2]={new int[3],new int[3]};
delete a[0];
delet a[10];
可是我不建议达内的学生这么写,可能会造成歧义,不是好的风格,而且在VC中会报错,应该写成例如以下 :
int * a[2];
a[0]= new int[3];
a[1]=new int[3];
delete a[0];
delet a[10];
这样申请内存的风格感觉比較符合大家的习惯;因为是数组,所以就不能够delete a;编译会出警告.delete a[1];
注意这里 是一个数组,不能delete [] ;


(2) 数组指针 : 一个指向一维或者多维数组的指针;
int * b=new int[10]; 指向一维数组的指针b ;
注意,这个时候释放空间一定要delete [] ,否则会造成内存泄露, b 就成为了空悬指针.

int (*b2)[10]=new int[10][10]; 注意,这里的b2指向了一个二维int型数组的首地址.
注意:在这里,b2等效于二维数组名,但没有指出其边界,即最高维的元素数量,可是它的最低维数的元素数量必需要指定!就像指向字符的指针,即等效一个字符串,不要把指向字符的指针说成指向字符串的指针。这与数组的嵌套定义相一致。
int(*b3) [30] [20]; //三级指针――>指向三维数组的指针;
int (*b2) [20]; //二级指针;
b3=new int [1] [20] [30];
b2=new int [30] [20];
两个数组都是由600个整数组成,前者是仅仅有一个元素的三维数组,每一个元素为30行20列的二维数组,而还有一个是有30个元素的二维数组,每一个元素为20个元素的一维数组。
删除这两个动态数组可用下式:
delete [] b3; //删除(释放)三维数组;
delete [] b2; //删除(释放)二维数组;
再次重申:这里的b2的类型是int (*) ,这样表示一个指向二维数组的指针。
b3表示一个指向(指向二维数组的指针)的指针,也就是三级指针.

(3)二级指针的指针
看下例 :
int (**p)[2]=new (int(*)[3])[2];
p[0]=new int[2][2];
p[1]=new int[2][2];
p[2]=new int[2][2];
delete [] p[0];
delete [] p[1];
delete [] p[2];
delete [] p;
注意此地方的指针类型为int (*),碰到这样的问题就把外边的[2]先去掉,然后回头先把int ** p=new int(*)[n]申请出来,然后再把外边的[2]附加上去;
p代表了一个指向二级指针的指针,在它申请空间的时候要注意指针的类型,那就是int (*)代表二级指针,而int (**)顾名思义就是代表指向二级指针的指针了。既然是指针要在堆里申请空间,那首先要定义它的范围:(int(*)[n])[2],n 个这种二级指针,当中的每个二级指针的最低维是2个元素.(由于要确定一个二级指针的话,它的最低维数是必须指定的,上边已经提到)。然后我们又分别为p[0],p[1],p[2]…在堆里分配了空间,尤其要注意的是:在释放内存的时候一定要为p[0],p[1],p[2],单独delete[] ,否则又会造成内存泄露,在delete[]p 的时候一定先delete p[0]; delete p[1],然后再把给p申请的空间释放掉 delete [] p ……这样会防止内存泄露。

(4)指针的指针:
int ** cc=new (int*)[10]; 声明一个10个元素的数组,数组每一个元素都是一个int *指针,每一个元素还能够单独申请空间,由于cc的类型是int*型的指针,所以你要在堆里申请的话就要用int *来申请;
看下边的样例 (vc & GNU编译器都已经通过);
int ** a= new int * [2];     //申请两个int * 型的空间
a[1]=new int[3];        //为a的第二个元素又申请了3个int 型空间,a[1]指向了此空间首地址处
a[0]=new int[4];        ////为a的第一个元素又申请了4个int 型空间,a[0] 指向了此空间的首地址处
int * b;
a[0][0]=0;
a[0][1]=1;
b=a[0];
delete [] a[0]       //一定要先释放a[0],a[1]的空间,否则会造成内存泄露.;
delete [] a[1];
delete [] a;
b++;
cout<<*b<<endl; //随机数
注意 :由于a 是在堆里申请的无名变量数组,所以在delete 的时候要用delete [] 来释放内存,可是a的每个元素又单独申请了空间,所以在delete [] a之前要先delete [] 掉 a[0],a[1],否则又会造成内存泄露.


(5) 指针数组:
我们再来看看另外一种 :二维指针数组
int *(*c)[3]=new int *[3][2];
假设你对上边的介绍的个种指针类型非常熟悉的话,你一眼就能看出来c是个二级指针,仅仅只是指向了一个二维int * 型的数组而已,也就是二维指针数组。
样例 :
int *(*b)[10]=new int*[2][10];//
b[0][0]=new int[100];
b[0][1]=new int[100];
*b[0][0]=1;
cout <<*b[0][0]<<endl; //打印结果为1
delete [] b[0][0];
delete [] b[0][1];
delete [] b;
cout<<*b[0][0]<<endl; //打印随机数
 这里仅仅为大家还是要注意内存泄露的问题,在这里就不再多说了。
假设看了上边的文章,大家预计就会非常熟悉,这个b是一个二维指针,它指向了一个指针数组

另外一种 :
int **d[2];表示一个拥有两个元素数组,每个元素都是int ** 型,这个指向指针的指针:)
   d无论如何变终究也是个数组,呵呵,
   假设你读懂了上边的,那下边的声明就非常easy了:
   d[0]=new int *[10];
   d[1]=new int * [10];
delete [] d[0];
delete [] d[1];
详细的就不再多说了 :)



二 : 函数指针 

关于函数指针,我想在我们可能须要写个函数,这个函数体内要调用还有一个函数,但是因为项目的进度有限,我们不知道要调用什么样的函数,这个时候可能就须要一个函数指针;

int a();这个一个函数的声明;
ing (*b)();这是一个函数指针的声明;
让我们来分析一下,左边圆括弧中的星号是函数指针声明的关键。另外两个元素是函数的返回类型(void)和由边圆括弧中的入口參数(本例中參数是空)。注意本例中还没有创建指针变量-仅仅是声明了变量类型。眼下能够用这个变量类型来创建类型定义名及用sizeof表达式获得函数指针的大小:
unsigned psize = sizeof (int (*) ()); 获得函数指针的大小
// 为函数指针声明类型定义
typedef int (*PFUNC) ();

PFUNC是一个函数指针,它指向的函数没有输入參数,返回int。使用这个类型定义名能够隐藏复杂的函数指针语法,就我本人强烈建议我们大内弟子使用这样的方式来定义;

以下是一个样例,一个简单函数指针的回调(在GNU编译器上通过,在VC上须要改变一个头文件就OK了)

#include<iostream> //GNU 编译器 g++ 实现
using namespace std;


#define DF(F) int F(){ cout<<"this is in function "<<#F<<endl;
return 0;
}
//声明定义DF(F)替代 int F();函数;
DF(a); DF(b); DF(c); DF(d); DF(e); DF(f); DF(g); DF(h); DF(i); //声明定义函数 a b c d e f g h i

// int (*pfunc)(); //一个简单函数指针的声明
typedef int(*FUNC)(); //一个函数指针类型的声明

FUNC ff[] = {a,b,c,d,e,f,g,h,i}; //声明一个函数指针数组,并初始化为以上声明的a,b,c,d,e,f,g,h,i函数

FUNC func3(FUNC vv){ //定义函数func3,传入一个函数指针,而且返回一个相同类型的函数指针
vv();
return vv;
}



int main(){
for(int i=0;i<sizeof(ff)/sizeof (FUNC);i++){ //循环调用函数指针
FUNC r=func3(ff[ i ]);
cout<<r()<<endl; //输出返回值,仅仅是返回了0
}
return 0;
}
到眼下为止,我们仅仅讨论了函数指针及回调而没有去注意ANSI C/C++的编译器规范。很多编译器有几种调用规范。如在Visual C++中,能够在函数类型前加_cdecl,_stdcall或者_pascal来表示其调用规范(默觉得_cdecl)。C++ Builder也支持_fastcall调用规范。调用规范影响编译器产生的给定函数名,參数传递的顺序(从右到左或从左到右),堆栈清理责任(调用者或者被调用者)以及參数传递机制(堆栈,CPU寄存器等)。
好了,先到此为止吧,写这篇文章耗费了基本上快半天的时间了,非常多事情还没有做,等改天有时间再回来整理,全部的源程序都放在openlab3server上我的文件夹下lib/cpp下,大家能够去拿。不知道的登陆openlab3 然后cd ~chengx/lib/cpp就能够看到了。

还有非常复杂的声明可能也是一种挑战 比方<<Think in c++>>里的
int (*(*f4())[10]();的声明,f4是一个返回指针的函数,该指针指向了含有10个函数指针的数组,这些函数返回整形值;不是这个函数有特别之处,而是Bruce Eckel 说的“从右到左的辨认规则”是一种非常好的方法,值得我们去学习,感谢他:)

最后我想应该跟大家说一下,敲代码应该就象JERRY所说的:简单就是美;我们应该遵循一个原则 : KISS (Keep It Simple,Stupid ,尽量保持程序简单 出自 :《Practical C programming》),把自己的程序尽量的简单明了,这是个很很好的习惯。

转自:http://blog.sina.com.cn/s/blog_5041fdd70100w787.html

c++ 依据输入动态声明数组(一维,二维),布布扣,bubuko.com

c++ 依据输入动态声明数组(一维,二维)

原文:http://www.cnblogs.com/mengfanrong/p/3812717.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!