1. print大法
test = Hello World print ("test:" + test)
2. math和numpy的区别:math只对单个元素,numpy会broadcasting。
import math import numpy as np x = [1, 2, 3] s = 1/(1+math.exp(-x) #这条语句会报错 s = 1/(1+np.exp(-x)) #这条语句没问题。
3. 定义函数
def sigmoid_derivative(x): s = 1/(1+np.exp(-x) ds = s*(1-s) return ds x = np.array([1, 2, 3]) print ("sigmoid_derivative(x) = " + str(sigmoid_derivative(x))
4. Shape和Reshape
image = np.array([[[ 0.67826139, 0.29380381], [ 0.90714982, 0.52835647], [ 0.4215251 , 0.45017551]], [[ 0.92814219, 0.96677647], [ 0.85304703, 0.52351845], [ 0.19981397, 0.27417313]], [[ 0.60659855, 0.00533165], [ 0.10820313, 0.49978937], [ 0.34144279, 0.94630077]], [[ 0.85304703, 0.52835647], [ 0.10820313, 0.45017551], [ 0.34144279, 0.90714982]]]) print ("image[3][2][1]: " + str(image[3][2][1])) # image[2][3][1]: 0.90714982 print ("image.shape = " + str(image.shape)) # image.shape = (4, 3, 2) vector = image.reshape(image.shape[0]*image.shape[1]*image.shape[2], 1) print ("vector.shape = " + str(vector.shape)) # vector.shape = (24, 1)
5. Normalize: x_norm = np.linalg.norm(x, ord = 2, axis = 1, keepdims = True),其中ord=2是默认值可以不写,axis=1是对横向量归一化,对于一维向量,axis只可以为0,keepdims=True是保持array的shape,防止出现(2, )这种shape,以防万一尽量都写上keepdims=True。
x = np.array([[0,3,4],[2,6,4]]) x_norm = np.linalg.norm(x, ord=2, axis =1, keepdims=True) x_new = x/x_norm print ("x: " + str(x)) print ("x_norm: "+str(x_norm)) print ("x_new: "+str(x_new)) 输出: x: [[0 3 4] [2 6 4]] x_norm: [[ 5. ] [ 7.48331477]] x_new: [[ 0. 0.6 0.8 ] [ 0.26726124 0.80178373 0.53452248]]
6. 求和:x_sum = np.sum(x, axis = 1, keepdims = True),其中axis=1是对横向量求和。
x = np.array([[0,3,4],[2,6,4]]) x_sum = np.sum(x, axis = 1, keepdims = True) print ("x_sum: "+str(x_sum)) 输出: x_sum: [[ 7] [12]]
7. 不同的乘法:
np.dot(x1, x2)对于矩阵是正常的矩阵乘法,对于一维向量是对应元素相乘再求和;
np.multiply(x1, x2)是一维向量对应元素相乘,得到一个一维向量。
这里time是计时的方法。
import time x1 = [9, 2, 5, 0, 0, 7, 5, 0, 0, 0, 9, 2, 5, 0, 0] x2 = [9, 2, 2, 9, 0, 9, 2, 5, 0, 0, 9, 2, 5, 0, 0] ### 向量点乘,对应元素相乘再求和 ### tic = time.process_time() dot = np.dot(x1,x2) toc = time.process_time() print ("dot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms") ### x1和x2的转置做矩阵乘法,n*1的矩阵乘以1*n的矩阵 ### tic = time.process_time() outer = np.outer(x1,x2) toc = time.process_time() print ("outer = " + str(outer) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms") ### 对应元素相乘得到1*n的向量 ### tic = time.process_time() mul = np.multiply(x1,x2) toc = time.process_time() print ("elementwise multiplication = " + str(mul) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms") ### 正常的矩阵乘法 ### W = np.random.rand(3,len(x1)) # Random 3*len(x1) numpy array tic = time.process_time() dot = np.dot(W,x1) toc = time.process_time() print ("gdot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms") 输出: dot = 278 ----- Computation time = 0.0ms outer = [[81 18 18 81 0 81 18 45 0 0 81 18 45 0 0] [18 4 4 18 0 18 4 10 0 0 18 4 10 0 0] [45 10 10 45 0 45 10 25 0 0 45 10 25 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [63 14 14 63 0 63 14 35 0 0 63 14 35 0 0] [45 10 10 45 0 45 10 25 0 0 45 10 25 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [81 18 18 81 0 81 18 45 0 0 81 18 45 0 0] [18 4 4 18 0 18 4 10 0 0 18 4 10 0 0] [45 10 10 45 0 45 10 25 0 0 45 10 25 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]] ----- Computation time = 0.0ms elementwise multiplication = [81 4 10 0 0 63 10 0 0 0 81 4 25 0 0] ----- Computation time = 0.0ms gdot = [ 14.98632469 18.30746169 17.30396991] ----- Computation time = 0.0ms
8. Broadcasting:loss = np.sum((yhat - y)**2, keepdims = True),这种**的运算,也是对每个元素计算平方。
原文:http://www.cnblogs.com/zonghaochen/p/7739899.html