首页 > 其他 > 详细

Limit point, Accumulation point, and Condensation point of a set

时间:2017-10-28 11:55:31      阅读:303      评论:0      收藏:0      [点我收藏+]

The three notions mentioned above should be clearly distinguished.

If $A$ is a subset of a topological space $X$ and $x$ is a point of $X$, then $x$ is an accumulation point of $A$ if and only if every neighbourhood of $x$ intersects $A\backslash \{x\}$.

It is a condensation point of $A$ if and only if every neighbourhood of it contains uncountably many points of $A$.

The term limit point is slightly ambiguous. One might call $x$ a limit point of $A$ if every neighbourhood of $x$ contains infinitely many points of $A$, but this is not standard.

Wikipedia: Let ${S}$ be a subset of a topological space $X$. A point $x$ in $X$ is a limit point of $S$ if every neighbourhood of $x$ contains at least one point of $S$ different from $x$ itself.

Limit point, Accumulation point, and Condensation point of a set

原文:http://www.cnblogs.com/aujun/p/5026285.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!