这是关于Pandas的简短介绍主要面向新用户。你可以参考Cookbook了解更复杂的使用方法
习惯上,我们这样导入:
In [1]: import pandas as pd In [2]: import numpy as np In [3]: import matplotlib.pyplot as plt
请参阅数据结构简介部分
通过传递一个列表的值创建一个Series,让Pandas创建一个默认的整数索引:
In [4]: s = pd.Series([1,3,5,np.nan,6,8]) In [5]: s Out[5]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64
通过传递的numpy数组创建一个DataFrame,并使用DataFrame索引和标记列:
In [6]: dates = pd.date_range(‘20130101‘, periods=6) In [7]: dates Out[7]: DatetimeIndex([‘2013-01-01‘, ‘2013-01-02‘, ‘2013-01-03‘, ‘2013-01-04‘, ‘2013-01-05‘, ‘2013-01-06‘], dtype=‘datetime64[ns]‘, freq=‘D‘) In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list(‘ABCD‘)) In [9]: df Out[9]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
通过传递可转换成类似序列结构的字典序列来创建DataFrame。
查看不同列的数据类型
In [12]: df2.dtypes Out[12]: A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object
如果你使用的是IPython,可以使用Tab自动补全列名称(以及公共属性)。以下是将要完成的属性的一个子集:
In [13]: df2.<TAB>
df2.A df2.bool
df2.abs df2.boxplot
df2.add df2.C
df2.add_prefix df2.clip
df2.add_suffix df2.clip_lower
df2.align df2.clip_upper
df2.all df2.columns
df2.any df2.combine
df2.append df2.combine_first
df2.apply df2.compound
df2.applymap df2.consolidate
df2.as_blocks df2.convert_objects
df2.asfreq df2.copy
df2.as_matrix df2.corr
df2.astype df2.corrwith
df2.at df2.count
df2.at_time df2.cov
df2.axes df2.cummax
df2.B df2.cummin
df2.between_time df2.cumprod
df2.bfill df2.cumsum
df2.blocks df2.D
像你见到的那样,A、B、C、D都是使用Tab自动补全的。E也是如此;为了简洁其它的属性被截断了。
请参阅基础部分
查看frame中头部和尾部的行
In [14]: df.head() Out[14]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [15]: df.tail(3) Out[15]: A B C D 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
显示索引、行和底层numpy数据
In [16]: df.index Out[16]: DatetimeIndex([‘2013-01-01‘, ‘2013-01-02‘, ‘2013-01-03‘, ‘2013-01-04‘, ‘2013-01-05‘, ‘2013-01-06‘], dtype=‘datetime64[ns]‘, freq=‘D‘) In [17]: df.columns Out[17]: Index([‘A‘, ‘B‘, ‘C‘, ‘D‘], dtype=‘object‘) In [18]: df.values Out[18]: array([[ 0.4691, -0.2829, -1.5091, -1.1356], [ 1.2121, -0.1732, 0.1192, -1.0442], [-0.8618, -2.1046, -0.4949, 1.0718], [ 0.7216, -0.7068, -1.0396, 0.2719], [-0.425 , 0.567 , 0.2762, -1.0874], [-0.6737, 0.1136, -1.4784, 0.525 ]])
显示您的数据的快速统计摘要
In [19]: df.describe() Out[19]: A B C D count 6.000000 6.000000 6.000000 6.000000 mean 0.073711 -0.431125 -0.687758 -0.233103 std 0.843157 0.922818 0.779887 0.973118 min -0.861849 -2.104569 -1.509059 -1.135632 25% -0.611510 -0.600794 -1.368714 -1.076610 50% 0.022070 -0.228039 -0.767252 -0.386188 75% 0.658444 0.041933 -0.034326 0.461706
数据转置
In [20]: df.T Out[20]: 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06 A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690 B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648 C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427 D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
按轴排序
In [21]: df.sort_index(axis=1, ascending=False) Out[21]: D C B A 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112 2013-01-02 -1.044236 0.119209 -0.173215 1.212112 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849 2013-01-04 0.271860 -1.039575 -0.706771 0.721555 2013-01-05 -1.087401 0.276232 0.567020 -0.424972 2013-01-06 0.524988 -1.478427 0.113648 -0.673690
按值排序
In [22]: df.sort_values(by=‘B‘) Out[22]: A B C D 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
选择一个单独的列,返回一个Series,等同于 df.A
In [23]: df[‘A‘] Out[23]: 2013-01-01 0.469112 2013-01-02 1.212112 2013-01-03 -0.861849 2013-01-04 0.721555 2013-01-05 -0.424972 2013-01-06 -0.673690 Freq: D, Name: A, dtype: float64
使用[]选择,对行进行切片。
In [24]: df[0:3] Out[24]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [25]: df[‘20130102‘:‘20130104‘] Out[25]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
详情参阅标签选择
使用标签获取交叉区域
In [26]: df.loc[dates[0]] Out[26]: A 0.469112 B -0.282863 C -1.509059 D -1.135632 Name: 2013-01-01 00:00:00, dtype: float64
通过标签选择多轴
In [27]: df.loc[:,[‘A‘,‘B‘]] Out[27]: A B 2013-01-01 0.469112 -0.282863 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020 2013-01-06 -0.673690 0.113648
显示标签切片,包含端点
In [28]: df.loc[‘20130102‘:‘20130104‘,[‘A‘,‘B‘]] Out[28]: A B 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771
降低返回对象维度
In [29]: df.loc[‘20130102‘,[‘A‘,‘B‘]] Out[29]: A 1.212112 B -0.173215 Name: 2013-01-02 00:00:00, dtype: float64
获取标量值
In [30]: df.loc[dates[0],‘A‘] Out[30]: 0.46911229990718628
快速访问标量(同上一方法等价)
In [31]: df.at[dates[0],‘A‘] Out[31]: 0.46911229990718628
详情参阅按位置选择
通过传递整数选择位置
In [32]: df.iloc[3] Out[32]: A 0.721555 B -0.706771 C -1.039575 D 0.271860 Name: 2013-01-04 00:00:00, dtype: float64
通过整数切片,类似于numpy/python
In [33]: df.iloc[3:5,0:2] Out[33]: A B 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020
通过列表指定位置,类似于numpy/python样式
In [34]: df.iloc[[1,2,4],[0,2]] Out[34]: A C 2013-01-02 1.212112 0.119209 2013-01-03 -0.861849 -0.494929 2013-01-05 -0.424972 0.276232
对行切片
In [35]: df.iloc[1:3,:] Out[35]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
对列切片
In [36]: df.iloc[:,1:3] Out[36]: B C 2013-01-01 -0.282863 -1.509059 2013-01-02 -0.173215 0.119209 2013-01-03 -2.104569 -0.494929 2013-01-04 -0.706771 -1.039575 2013-01-05 0.567020 0.276232 2013-01-06 0.113648 -1.478427
获取指定值
In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858
快速访问标量(同上一方法等价)
In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858
使用单列值选择数据。
In [39]: df[df.A > 0] Out[39]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
从满足布尔条件的DataFrame中选择值。
In [40]: df[df > 0] Out[40]: A B C D 2013-01-01 0.469112 NaN NaN NaN 2013-01-02 1.212112 NaN 0.119209 NaN 2013-01-03 NaN NaN NaN 1.071804 2013-01-04 0.721555 NaN NaN 0.271860 2013-01-05 NaN 0.567020 0.276232 NaN 2013-01-06 NaN 0.113648 NaN 0.524988
使用isin()方法进行过滤
In [41]: df2 = df.copy() In [42]: df2[‘E‘] = [‘one‘, ‘one‘,‘two‘,‘three‘,‘four‘,‘three‘] In [43]: df2 Out[43]: A B C D E 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three In [44]: df2[df2[‘E‘].isin([‘two‘,‘four‘])] Out[44]: A B C D E 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
设置一个新列会自动使索引对齐数据
In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range(‘20130102‘, periods=6)) In [46]: s1 Out[46]: 2013-01-02 1 2013-01-03 2 2013-01-04 3 2013-01-05 4 2013-01-06 5 2013-01-07 6 Freq: D, dtype: int64 In [47]: df[‘F‘] = s1
按标签切片
In [48]: df.at[dates[0],‘A‘] = 0
按位置设置值
In [49]: df.iat[0,1] = 0
通过numpy数组设置
In [50]: df.loc[:,‘D‘] = np.array([5] * len(df))
设置结果如下
In [51]: df Out[51]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 2013-01-05 -0.424972 0.567020 0.276232 5 4.0 2013-01-06 -0.673690 0.113648 -1.478427 5 5.0
where操作赋值
In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0
Pandas主要使用np.nan来表示缺失数据。默认情况下不包括在计算中。请参阅缺失数据部分
重建索引允许修改/添加/删除指定轴的索引,并返回数据副本。
In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + [‘E‘]) In [56]: df1.loc[dates[0]:dates[1],‘E‘] = 1 In [57]: df1 Out[57]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN
删除所有缺少数据的行。
In [58]: df1.dropna(how=‘any‘) Out[58]: A B C D F E 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
填写缺失的数据行
In [59]: df1.fillna(value=5) Out[59]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0
获取值为nan的布尔值
In [60]: pd.isnull(df1) Out[60]: A B C D F E 2013-01-01 False False False False True False 2013-01-02 False False False False False False 2013-01-03 False False False False False True 2013-01-04 False False False False False True
请参阅二进制运算的基础部分
运算一般排除丢失的数据。
执行描述性统计
In [61]: df.mean() Out[61]: A -0.004474 B -0.383981 C -0.687758 D 5.000000 F 3.000000 dtype: float64
在其他轴上执行相同的运算
In [62]: df.mean(1) Out[62]: 2013-01-01 0.872735 2013-01-02 1.431621 2013-01-03 0.707731 2013-01-04 1.395042 2013-01-05 1.883656 2013-01-06 1.592306 Freq: D, dtype: float64
运算具有不同维度和需要对齐的对象。此外,Pandas会沿着指定维度运算。
In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2) In [64]: s Out[64]: 2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1.0 2013-01-04 3.0 2013-01-05 5.0 2013-01-06 NaN Freq: D, dtype: float64 In [65]: df.sub(s, axis=‘index‘) Out[65]: A B C D F 2013-01-01 NaN NaN NaN NaN NaN 2013-01-02 NaN NaN NaN NaN NaN 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0 2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0 2013-01-06 NaN NaN NaN NaN NaN
将函数应用于数据
In [66]: df.apply(np.cumsum) Out[66]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 -1.389850 10 1.0 2013-01-03 0.350263 -2.277784 -1.884779 15 3.0 2013-01-04 1.071818 -2.984555 -2.924354 20 6.0 2013-01-05 0.646846 -2.417535 -2.648122 25 10.0 2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0 In [67]: df.apply(lambda x: x.max() - x.min()) Out[67]: A 2.073961 B 2.671590 C 1.785291 D 0.000000 F 4.000000 dtype: float64
详情请请参阅直方图和离散化
In [68]: s = pd.Series(np.random.randint(0, 7, size=10)) In [69]: s Out[69]: 0 4 1 2 2 1 3 2 4 6 5 4 6 4 7 6 8 4 9 4 dtype: int64 In [70]: s.value_counts() Out[70]: 4 5 6 2 2 2 1 1 dtype: int64
Series在字符串中设置了一组字符串处理方法,可以方便地对数组中每个元素进行操作,如下面代码片段所示。请注意,字符串中的模式匹配默认使用正则表达式。(在某些情况下总是使用它们)。详情请参阅矢量字符串方法。
In [71]: s = pd.Series([‘A‘, ‘B‘, ‘C‘, ‘Aaba‘, ‘Baca‘, np.nan, ‘CABA‘, ‘dog‘, ‘cat‘]) In [72]: s.str.lower() Out[72]: 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object
在连接/合并类型操作的情况下,Pandas提供了一些具有用于索引和关系代数的各种函数合并Series、DataFrame和Panel对象的方法
请参阅合并部分
使用concat()把Pandas对象连接:
In [73]: df = pd.DataFrame(np.random.randn(10, 4)) In [74]: df Out[74]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495 # break it into pieces In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces) Out[76]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495
SQL风格合并。请参阅数据库风格连接
In [77]: left = pd.DataFrame({‘key‘: [‘foo‘, ‘foo‘], ‘lval‘: [1, 2]}) In [78]: right = pd.DataFrame({‘key‘: [‘foo‘, ‘foo‘], ‘rval‘: [4, 5]}) In [79]: left Out[79]: key lval 0 foo 1 1 foo 2 In [80]: right Out[80]: key rval 0 foo 4 1 foo 5 In [81]: pd.merge(left, right, on=‘key‘) Out[81]: key lval rval 0 foo 1 4 1 foo 1 5 2 foo 2 4 3 foo 2 5
给出另一个例子:
In [82]: left = pd.DataFrame({‘key‘: [‘foo‘, ‘bar‘], ‘lval‘: [1, 2]}) In [83]: right = pd.DataFrame({‘key‘: [‘foo‘, ‘bar‘], ‘rval‘: [4, 5]}) In [84]: left Out[84]: key lval 0 foo 1 1 bar 2 In [85]: right Out[85]: key rval 0 foo 4 1 bar 5 In [86]: pd.merge(left, right, on=‘key‘) Out[86]: key lval rval 0 foo 1 4 1 bar 2 5
添加行到DataFrame。请参阅追加
In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=[‘A‘,‘B‘,‘C‘,‘D‘]) In [88]: df Out[88]: A B C D 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 In [89]: s = df.iloc[3] In [90]: df.append(s, ignore_index=True) Out[90]: A B C D 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 8 1.453749 1.208843 -0.080952 -0.264610
"分组"我们指的是涉及一个或多个以下步骤的过程
请参阅分组部分
In [91]: df = pd.DataFrame({‘A‘ : [‘foo‘, ‘bar‘, ‘foo‘, ‘bar‘, ....: ‘foo‘, ‘bar‘, ‘foo‘, ‘foo‘], ....: ‘B‘ : [‘one‘, ‘one‘, ‘two‘, ‘three‘, ....: ‘two‘, ‘two‘, ‘one‘, ‘three‘], ....: ‘C‘ : np.random.randn(8), ....: ‘D‘ : np.random.randn(8)}) ....: In [92]: df Out[92]: A B C D 0 foo one -1.202872 -0.055224 1 bar one -1.814470 2.395985 2 foo two 1.018601 1.552825 3 bar three -0.595447 0.166599 4 foo two 1.395433 0.047609 5 bar two -0.392670 -0.136473 6 foo one 0.007207 -0.561757 7 foo three 1.928123 -1.623033
分组,然后将sum()函数应用于生成的组。
In [93]: df.groupby(‘A‘).sum() Out[93]: C D A bar -2.802588 2.42611 foo 3.146492 -0.63958
按多列分组形成层次索引,然后应用该函数。
In [94]: df.groupby([‘A‘,‘B‘]).sum() Out[94]: C D A B bar one -1.814470 2.395985 three -0.595447 0.166599 two -0.392670 -0.136473 foo one -1.195665 -0.616981 three 1.928123 -1.623033 two 2.414034 1.600434
In [95]: tuples = list(zip(*[[‘bar‘, ‘bar‘, ‘baz‘, ‘baz‘, ....: ‘foo‘, ‘foo‘, ‘qux‘, ‘qux‘], ....: [‘one‘, ‘two‘, ‘one‘, ‘two‘, ....: ‘one‘, ‘two‘, ‘one‘, ‘two‘]])) ....: In [96]: index = pd.MultiIndex.from_tuples(tuples, names=[‘first‘, ‘second‘]) In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=[‘A‘, ‘B‘]) In [98]: df2 = df[:4] In [99]: df2 Out[99]: A B first second bar one 0.029399 -0.542108 two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230
stack()方法将"压缩"DataFrame列中的一个级别。
In [100]: stacked = df2.stack() In [101]: stacked Out[101]: first second bar one A 0.029399 B -0.542108 two A 0.282696 B -0.087302 baz one A -1.575170 B 1.771208 two A 0.816482 B 1.100230 dtype: float64
使用"stacked"DataFrame或Series(有一个MultilIndex作为索引)stack()的反向操作是unstack(),它默认情况下解除最后一个级别。
In [102]: stacked.unstack() Out[102]: A B first second bar one 0.029399 -0.542108 two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230 In [103]: stacked.unstack(1) Out[103]: second one two first bar A 0.029399 0.282696 B -0.542108 -0.087302 baz A -1.575170 0.816482 B 1.771208 1.100230 In [104]: stacked.unstack(0) Out[104]: first bar baz second one A 0.029399 -1.575170 B -0.542108 1.771208 two A 0.282696 0.816482 B -0.087302 1.100230
请参阅数据透视表部分。
In [105]: df = pd.DataFrame({‘A‘ : [‘one‘, ‘one‘, ‘two‘, ‘three‘] * 3, .....: ‘B‘ : [‘A‘, ‘B‘, ‘C‘] * 4, .....: ‘C‘ : [‘foo‘, ‘foo‘, ‘foo‘, ‘bar‘, ‘bar‘, ‘bar‘] * 2, .....: ‘D‘ : np.random.randn(12), .....: ‘E‘ : np.random.randn(12)}) .....: In [106]: df Out[106]: A B C D E 0 one A foo 1.418757 -0.179666 1 one B foo -1.879024 1.291836 2 two C foo 0.536826 -0.009614 3 three A bar 1.006160 0.392149 4 one B bar -0.029716 0.264599 5 one C bar -1.146178 -0.057409 6 two A foo 0.100900 -1.425638 7 three B foo -1.035018 1.024098 8 one C foo 0.314665 -0.106062 9 one A bar -0.773723 1.824375 10 two B bar -1.170653 0.595974 11 three C bar 0.648740 1.167115
我们可以轻松地从这些数据中快速生成数据透视表:
In [107]: pd.pivot_table(df, values=‘D‘, index=[‘A‘, ‘B‘], columns=[‘C‘]) Out[107]: C bar foo A B one A -0.773723 1.418757 B -0.029716 -1.879024 C -1.146178 0.314665 three A 1.006160 NaN B NaN -1.035018 C 0.648740 NaN two A NaN 0.100900 B -1.170653 NaN C NaN 0.536826
Pandas具有简单、强大和高效的功能,用于在变频期间执行重采样操作。这在金融应用中非常常见,但是不限于此。请参阅时间序列部分
In [108]: rng = pd.date_range(‘1/1/2012‘, periods=100, freq=‘S‘) In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) In [110]: ts.resample(‘5Min‘).sum() Out[110]: 2012-01-01 25083 Freq: 5T, dtype: int64
时区表示
In [111]: rng = pd.date_range(‘3/6/2012 00:00‘, periods=5, freq=‘D‘) In [112]: ts = pd.Series(np.random.randn(len(rng)), rng) In [113]: ts Out[113]: 2012-03-06 0.464000 2012-03-07 0.227371 2012-03-08 -0.496922 2012-03-09 0.306389 2012-03-10 -2.290613 Freq: D, dtype: float64 In [114]: ts_utc = ts.tz_localize(‘UTC‘) In [115]: ts_utc Out[115]: 2012-03-06 00:00:00+00:00 0.464000 2012-03-07 00:00:00+00:00 0.227371 2012-03-08 00:00:00+00:00 -0.496922 2012-03-09 00:00:00+00:00 0.306389 2012-03-10 00:00:00+00:00 -2.290613 Freq: D, dtype: float64
转换到另一时区
In [116]: ts_utc.tz_convert(‘US/Eastern‘) Out[116]: 2012-03-05 19:00:00-05:00 0.464000 2012-03-06 19:00:00-05:00 0.227371 2012-03-07 19:00:00-05:00 -0.496922 2012-03-08 19:00:00-05:00 0.306389 2012-03-09 19:00:00-05:00 -2.290613 Freq: D, dtype: float64
在时间跨度之间转换
In [117]: rng = pd.date_range(‘1/1/2012‘, periods=5, freq=‘M‘) In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng) In [119]: ts Out[119]: 2012-01-31 -1.134623 2012-02-29 -1.561819 2012-03-31 -0.260838 2012-04-30 0.281957 2012-05-31 1.523962 Freq: M, dtype: float64 In [120]: ps = ts.to_period() In [121]: ps Out[121]: 2012-01 -1.134623 2012-02 -1.561819 2012-03 -0.260838 2012-04 0.281957 2012-05 1.523962 Freq: M, dtype: float64 In [122]: ps.to_timestamp() Out[122]: 2012-01-01 -1.134623 2012-02-01 -1.561819 2012-03-01 -0.260838 2012-04-01 0.281957 2012-05-01 1.523962 Freq: MS, dtype: float64
在时间和时间戳之间转换,可以使用一些方便的算术函数。在下面例子中:
In [123]: prng = pd.period_range(‘1990Q1‘, ‘2000Q4‘, freq=‘Q-NOV‘) In [124]: ts = pd.Series(np.random.randn(len(prng)), prng) In [125]: ts.index = (prng.asfreq(‘M‘, ‘e‘) + 1).asfreq(‘H‘, ‘s‘) + 9 In [126]: ts.head() Out[126]: 1990-03-01 09:00 -0.902937 1990-06-01 09:00 0.068159 1990-09-01 09:00 -0.057873 1990-12-01 09:00 -0.368204 1991-03-01 09:00 -1.144073 Freq: H, dtype: float64
自0.15版本以来,Pandas可以在DataFrame中包含分类数据。有关完整文档,请参阅分类介绍和API文档。
In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":[‘a‘, ‘b‘, ‘b‘, ‘a‘, ‘a‘, ‘e‘]})
将原始数据转换为分类数据。
In [128]: df["grade"] = df["raw_grade"].astype("category") In [129]: df["grade"] Out[129]: 0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): [a, b, e]
将类别重命名为更有意义的名称
In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]
重新排列类别并同时添加丢失的类别(Series.cat下的方法返回一个默认的新Series)。
In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"]) In [132]: df["grade"] Out[132]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): [very bad, bad, medium, good, very good]
排序是按类别中的顺序排序的,而不是词法顺序。
In [133]: df.sort_values(by="grade") Out[133]: id raw_grade grade 5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good
按分类列分组还显示空类别。
In [134]: df.groupby("grade").size() Out[134]: grade very bad 1 bad 0 medium 0 good 2 very good 3 dtype: int64
绘图文档
In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range(‘1/1/2000‘, periods=1000)) In [136]: ts = ts.cumsum() In [137]: ts.plot() Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x1187d7278>
在DataFrame中,plot()可以方便绘制带标签的所有列。
In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, .....: columns=[‘A‘, ‘B‘, ‘C‘, ‘D‘]) .....: In [139]: df = df.cumsum() In [140]: plt.figure(); df.plot(); plt.legend(loc=‘best‘) Out[140]: <matplotlib.legend.Legend at 0x11b5dea20>
In [141]: df.to_csv(‘foo.csv‘)
In [142]: pd.read_csv(‘foo.csv‘) Out[142]: Unnamed: 0 A B C D 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 .. ... ... ... ... ... 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]
读写HDF存储
写入HDF5存储
In [143]: df.to_hdf(‘foo.h5‘,‘df‘)
从HDF5存储中读取
In [144]: pd.read_hdf(‘foo.h5‘,‘df‘) Out[144]: A B C D 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 2000-01-05 0.578117 0.511371 0.103552 -2.428202 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 ... ... ... ... ... 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]
读写Excel
写入Excel文件
In [145]: df.to_excel(‘foo.xlsx‘, sheet_name=‘Sheet1‘)
从Excel文件读取
In [146]: pd.read_excel(‘foo.xlsx‘, ‘Sheet1‘, index_col=None, na_values=[‘NA‘]) Out[146]: A B C D 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 2000-01-05 0.578117 0.511371 0.103552 -2.428202 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 ... ... ... ... ... 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]
如果你尝试以下操作,可以看到如下异常:
>>> if pd.Series([False, True, False]): print("I was true") Traceback ... ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
原文:http://www.cnblogs.com/yan-lei/p/7718744.html