首页 > 其他 > 详细

Session.run() & Tensor.eval()

时间:2017-11-01 11:53:28      阅读:319      评论:0      收藏:0      [点我收藏+]

如果有一个Tensor t,在使用t.eval()时,等价于:

tf.get_defaut_session().run(t)
t = tf.constant(42.0)
sess = tf.Session()
with sess.as_default():   # or `with sess:` to close on exit
    assert sess is tf.get_default_session()
    assert t.eval() == sess.run(t)

这其中最主要的区别是你可以使用sess.run()在同一步获取多个tensor中的值,

例如:

t = tf.constant(42.0)
u = tf.constant(37.0)
tu = tf.mul(t, u)
ut = tf.mul(u, t)
with sess.as_default():
   tu.eval()  # runs one step
   ut.eval()  # runs one step
   sess.run([tu, ut])  # evaluates both tensors in a single step

注意到:每次使用 eval 和 run时,都会执行整个计算图,为了获取计算的结果,将它分配给tf.Variable,然后获取。

Session.run() & Tensor.eval()

原文:http://www.cnblogs.com/qniguoym/p/7765500.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!