首页 > 其他 > 详细

[LintCode] Triangle

时间:2017-11-12 11:59:20      阅读:301      评论:0      收藏:0      [点我收藏+]

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

Example

Given the following triangle:

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

 

 

Solution 1. Recursion.

For a given point at the bottom f(i, n - 1) = triangle[i][n - 1] + Math,min(f(i - 1, n - 2),  f(i, n - 2)); 

This recursive formula provides a straightforward solution.

 

Solution 2. Top Down Dynamic Programming

 1 public class Solution {
 2     public int minimumTotal(int[][] triangle) {
 3         // write your code here
 4         if(triangle == null || triangle.length == 0){
 5             return Integer.MAX_VALUE;
 6         }
 7         int row = triangle.length;
 8         int[][] f = new int[row][];
 9         for(int i = 0; i < row; i++){
10             f[i] = new int[triangle[i].length];
11         }
12         
13         f[0][0] = triangle[0][0];
14         for(int i = 1; i < row; i++){
15             f[i][0] = f[i - 1][0] + triangle[i][0];
16             f[i][i] = f[i - 1][i - 1] + triangle[i][i];
17         }
18         
19         for(int i = 1; i < row; i++){
20             for(int j = 1; j < i; j++){
21                 f[i][j] = Math.min(f[i - 1][j], f[i - 1][j - 1]) + triangle[i][j];
22             }
23         }
24         
25         int min = Integer.MAX_VALUE;
26         for(int i = 0; i < row; i++){
27             if(f[row - 1][i] < min){
28                 min = f[row - 1][i];
29             }
30         }
31         return min;
32     }
33 }

 

 

Solution 3. Bottom Up Dynamic Programming with space optimization, 

 1 public class Solution {
 2     public int minimumTotal(int[][] triangle) {
 3         if(triangle == null || triangle.length == 0){
 4             return 0;
 5         }
 6         int n = triangle.length;
 7         int[] path = new int[n];
 8         
 9         for(int i = 0; i < n; i++){
10             path[i] = triangle[n - 1][i];
11         }
12         
13         for(int i = n - 2; i >= 0; i--){
14             for(int j = 0; j <= i; j++){
15                 path[j] = Math.min(path[j], path[j + 1]) + triangle[i][j];
16             }
17         }
18         return path[0];
19     }
20 }

 

 

Related Problems

Minimum Path Sum

[LintCode] Triangle

原文:http://www.cnblogs.com/lz87/p/7498460.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!