首页 > 其他 > 详细

[LintCode] Minimum Path Sum

时间:2017-11-12 12:12:36      阅读:197      评论:0      收藏:0      [点我收藏+]

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

You can only move either down or right at any point in time.

 

Solution 1. Recursion, DFS 

 1 public class Solution {
 2     private int minPath = Integer.MAX_VALUE;
 3     public int minPathSum(int[][] grid) {
 4         if(grid == null || grid.length == 0 || grid[0].length == 0){
 5             return -1;
 6         }
 7         traverse(grid, 0, 0, 0);
 8         return minPath;
 9     }
10     private void traverse(int[][] grid, int x, int y, int sum){
11         int m = grid.length, n = grid[0].length;
12         if(x >= m || y >= n) {
13             return;
14         }
15         sum += grid[x][y];
16         if(x == m - 1 && y == n - 1){
17             if(sum < minPath){
18                 minPath = sum;
19             }
20             return;
21         }
22         traverse(grid, x + 1, y, sum);  
23         traverse(grid, x, y + 1, sum); 
24     }
25 }

 

Solution 2. DFS, divide and conquer + memoization

 1 public class Solution {
 2     private int[][] hash;
 3     public int minPathSum(int[][] grid) {
 4         if(grid == null || grid.length == 0 || grid[0].length == 0){
 5             return -1;
 6         }
 7         hash = new int[grid.length][grid[0].length];
 8         for(int i = 0; i < hash.length; i++){
 9             for(int j = 0; j < hash[0].length; j++){
10                 hash[i][j] = Integer.MAX_VALUE;
11             }
12         }
13         return divideConquer(grid, 0, 0);
14     }
15     private int divideConquer(int[][] grid, int x, int y){
16         int m = grid.length, n = grid[0].length;
17         if(x == m - 1 && y == n - 1){
18             return grid[x][y];
19         }
20         if(x >= m || y >= n){
21             return Integer.MAX_VALUE;
22         }
23         if(hash[x][y] != Integer.MAX_VALUE){
24             return hash[x][y];
25         }
26         hash[x][y] = grid[x][y] + Math.min(divideConquer(grid, x, y + 1), divideConquer(grid, x + 1, y));
27         return hash[x][y];
28     }
29 }

 

Solution 3.  Dynamic Programming 

State: f[i][j],  the min distance from (0, 0) to (i, j)

Function: f[i][j] = grid[i][j] + Math.min(f[i - 1][j], f[i][j - 1])

Initialization: f[i][0] = grid[i][0] + f[i - 1][0]; f[0][j] = grid[0][j] + f[0][j - 1]

Answer: f[m - 1][n - 1]

 

 1 public class Solution {
 2     public int minPathSum(int[][] grid) {
 3         if(grid == null || grid.length == 0 || grid[0].length == 0){
 4             return -1;
 5         }
 6         int rowLen = grid.length, colLen = grid[0].length;
 7         int[][] f = new int[rowLen][colLen];
 8         f[0][0] = grid[0][0];
 9         for(int row = 1; row < rowLen; row++){
10             f[row][0] = grid[row][0] + f[row - 1][0]; 
11         }
12         for(int col = 1; col < colLen; col++){
13             f[0][col] = grid[0][col] + f[0][col - 1];
14         }
15         for(int i = 1; i < rowLen; i++){
16             for(int j = 1; j < colLen; j++){
17                 f[i][j] = grid[i][j] + Math.min(f[i][j - 1], f[i - 1][j]);
18             }
19         }
20         return f[rowLen - 1][colLen - 1];
21     }
22 }

 

Solution 4. DP with space optimization

 

 1 public class Solution {
 2     public int minPathSum(int[][] grid) {
 3         if(grid == null || grid.length == 0 || grid[0].length == 0){
 4             return -1;
 5         }
 6         int rowLen = grid.length, colLen = grid[0].length;
 7         int[][] T = new int[2][colLen];
 8         T[0][0] = grid[0][0];
 9         for(int j = 1; j < colLen; j++){
10             T[0][j] = T[0][j - 1] + grid[0][j];
11         }
12         for(int i = 1; i < rowLen; i++){
13             T[i % 2][0] = T[(i - 1) % 2][0] + grid[i][0];
14             for(int j = 1; j < colLen; j++){
15                 T[i % 2][j] = grid[i][j] + Math.min(T[(i - 1) % 2][j], T[i % 2][j - 1]);
16             }
17         }
18         return T[(rowLen - 1) % 2][colLen - 1];
19     }
20 }

 

 

 

Related Problems

Triangle 

Binary Tree Maximum Path Sum 

[LintCode] Minimum Path Sum

原文:http://www.cnblogs.com/lz87/p/7498455.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!