本次作业为实现天气预测的树模型,图部分没有实现,但是,框架部分实现了。
操作系统:win 10
编辑环境:anaconda
Python版本:3.6
先给出代码:
from math import log import operator def calcShannonEnt(dataSet): #计算数据的熵 numEntries=len(dataSet) #数据条数 labelCounts={} for featVec in dataSet: currentLabel=featVec[-1]#每一行最后一个字(类别) if currentLabel not in labelCounts.keys(): labelCounts[currentLabel]=0 labelCounts[currentLabel]+=1 #统计有多少个类似以及每个类的数量 shannonEnt=0 for key in labelCounts: prob=float(labelCounts[key])/numEntries #计算单个类的熵值 shannonEnt-=prob*log(prob,2)#累加每个类的熵值 return shannonEnt def createDataSet1(): #创建示例数据 dataSet = [[‘晴天‘,‘高温‘,‘中湿‘,‘无风‘,‘不宜‘], [‘晴天‘,‘高温‘,‘中湿‘,‘有风‘,‘不宜‘], [‘多云‘,‘高温‘,‘低湿‘,‘无风‘,‘适宜‘], [‘雨天‘,‘低温‘,‘高湿‘,‘无风‘,‘适宜‘], [‘雨天‘,‘低温‘,‘低湿‘,‘无风‘,‘适宜‘], [‘雨天‘,‘低温‘,‘低湿‘,‘有风‘,‘不宜‘], [‘多云‘,‘低温‘,‘低湿‘,‘有风‘,‘适宜‘], [‘晴天‘,‘中温‘,‘高湿‘,‘无风‘,‘不宜‘], [‘晴天‘,‘低温‘,‘低湿‘,‘无风‘,‘适宜‘], [‘雨天‘,‘中温‘,‘低湿‘,‘无风‘,‘适宜‘], [‘晴天‘,‘中温‘,‘低湿‘,‘有风‘,‘适宜‘], [‘多云‘,‘中温‘,‘中湿‘,‘有风‘,‘适宜‘], [‘多云‘,‘高温‘,‘低湿‘,‘无风‘,‘适宜‘], [‘雨天‘,‘中温‘,‘低湿‘,‘有风‘,‘不宜‘]] labels = [‘天气‘,‘温度‘,‘湿度‘,‘风况‘]#两个特征 return dataSet,labels def splitDataSet(dataSet,axis,value):#按某个特征分类后的数据 retDataSet=[] for featVec in dataSet: if featVec[axis]==value: reducedFeatVec = featVec[:axis] reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec) return retDataSet def chooseBestFeatureToSplit(dataSet): #选择最优的分类特征 numFeatures = len(dataSet[0])-1 baseEntropy = calcShannonEnt(dataSet)#原始的熵 bestInfoGain = 0 bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] uniqueVals = set(featList) newEntropy = 0 for value in uniqueVals: subDataSet = splitDataSet(dataSet,i,value) prob = len(subDataSet)/float(len(dataSet)) newEntropy +=prob*calcShannonEnt(subDataSet)#按特征分类后的熵 infoGain = baseEntropy - newEntropy #原始熵与按特征分类后的熵的差值 if (infoGain>bestInfoGain):#若按某特征划分后,熵值减少的最大,则次特征为最优分类特征 bestInfoGain=infoGain bestFeature = i return bestFeature def majorityCnt(classList):#按分类后类别数量排序,比如:最后分类为两男一女,则判断为男: classCount={} for vote in classList: if vote not in classCount.keys(): classCount[vote]=0 classCount[vote]+=1 sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) return sortedClassCount[0][0] def createTree(dataSet,labels): classList=[example[-1] for example in dataSet] #类别:男女 if classList.count(classList[0])==len(classList): return classList[0] if len(dataSet[0])==1: return majorityCnt(classList) bestFeat=chooseBestFeatureToSplit(dataSet)#选择最优特征 bestFeatLabel=labels[bestFeat] myTree={bestFeatLabel:{}}#分类结果以字典的形式保存 del(labels[bestFeat]) featValues=[example[bestFeat] for example in dataSet] uniqueVals=set(featValues) for value in uniqueVals: subLabels=labels[:] myTree[bestFeatLabel][value]=createTree(splitDataSet (dataSet,bestFeat,value),subLabels) return myTree if __name__==‘__main__‘: dataSet, labels=createDataSet1()#创造示例数据 print(createTree(dataSet,labels))#输出决策树模型
其实现结果为:
手动画出模型为:
另外,看看到一个利用自带函数的一个写法,笔者还没有实现,希望大家集思广益:
https://zhuanlan.zhihu.com/p/25428390
本文参考链接:
http://blog.csdn.net/csqazwsxedc/article/details/65697652
原文:http://www.cnblogs.com/jtailong/p/7872367.html