由于图像关于对角线对称,所以我们只看下三角区域。将x轴看做分母,被圈的点看成分子
依次是{1/2},{1/3,1/2},{1/4,3/4},{1/5,2/5,3/5,4/5}
写成前缀和的形式就是 {1/2},{1/2,1/3,2/3},{1/2,1/3,1/3,1/4,3/4},{1/2,1/3,1/3,1/4,3/4,1/5,2/5,3/5,4/5}
发现,这就是一个法雷级数,即第k项增加的数就是phi[k]。最后的答案*2+(0,1)+(1,0),(1,1)三个点就好了
#include <iostream> #include <cstdio> #include <cmath> using namespace std; #define N 1009 int phi[N]; int Farey[N]={0,0,1}; void init() { int i, j; for(i = 1; i < N; i++) phi[i] = i; for(i = 2; i < N; i++) if(i == phi[i]) for(j = i; j < N; j += i) phi[j] = (phi[j] / i) * (i - 1); } int main() { init(); for(int i=3;i<N;i++) { Farey[i]=Farey[i-1]+phi[i]; } int cas,n,ca=1; scanf("%d",&cas); while(cas--) { scanf("%d", &n); printf("%d %d %d\n",ca++,n,Farey[n]*2+3); } return 0; }
#include <iostream> #include <cstdio> #include <cmath> #include<cstring> #include<cstdlib> using namespace std; int mp[1005][1005]; bool vis[1005][1005]; int gcd(int a,int b) {return a%b==0?b:gcd(b,a%b);} int a[1005][1005]; int main() { memset(vis,0,sizeof(vis)); int ans=0; for(int i=1;i<=1000;i++) { for(int j=1;j<=1000;j++) { int gg=gcd(i,j); if(vis[i/gg][j/gg]) { a[i][j]+=a[i-1][j]+a[i][j-1]; a[i][j]-=a[i-1][j-1]; continue; } else { vis[i][j]=1; a[i][j]+=a[i-1][j]+a[i][j-1]+1; a[i][j]-=a[i-1][j-1]; } } } int n; int ca=1; int cas; scanf("%d",&cas); while(cas--) { scanf("%d",&n); printf("%d %d %d\n",ca++,n,a[n][n]+2); } return 0; }
poj 3090 Visible Lattice Points 法雷级数||打表,布布扣,bubuko.com
poj 3090 Visible Lattice Points 法雷级数||打表
原文:http://blog.csdn.net/t1019256391/article/details/36373967