首页 > 数据库技术 > 详细

SQLAlchemy技术文档(中文版)-下

时间:2017-11-28 23:58:55      阅读:338      评论:0      收藏:0      [点我收藏+]

10.建立联系(外键)

是时候考虑怎样映射和查询一个和Users表关联的第二张表了。假设我们系统的用户可以存储任意数量的email地址。我们需要定义一个新表AddressUser相关联。

from sqlalchemyimport ForeignKey

from sqlalchemy.orm import relationship, backref
class Address(Base):
__tablename__ = addresses
id= Column(Integer, primary_key=True)
email_address = Column(String, nullable=False)
user_id = Column(Integer, ForeignKey(users.id))
user = relationship("User", backref=backref(addresses,order_by=id))
def __repr__(self):
    return"<Address(email_address=‘%s‘)>"%self.email_address

 

构造类和外键简单,就不过多赘述。主要说明以下relationship()函数:这个函数告诉ORMAddress类应该和User类连接起来,通过使用addresses.userrelationship()使用外键明确这两张表的关系。决定Adderess.user属性是多对一的。relationship()的子函数backref()提供表达反向关系的细节:relationship()对象的集合被User.address引用。多对一的反向关系总是一对多。更多的细节参考Basic RelRational Patterns

这两个互补关系:Address.userUser.addresses被称为双向关系。这是SQLAlchemy ORM的一个非常关键的功能。更多关系backref的细节参见Linking Relationships with Backref

假设声明的方法已经开始使用,relationship()中和其他类关联的参数可以通过strings指定。在上文的User类中,一旦所有映射成功,为了产生实际的参数,这些字符串会被当做Python的表达式。下面是一个在User类中创建双向联系的例子:

class User(Base):
addresses = relationship("Address", order_by="Address.id", backref="user")

 

一些知识:

在大多数的外键约束(尽管不是所有的)关系数据库只能链接到一个主键列,或具有唯一约束的列。

外键约束如果是指向多个列的主键,并且它本身也具有多列,这种被称为“复合外键”。

外键列可以自动更新自己来相应它所引用的行或者列。这被称为级联,是一种建立在关系数据库的功能。

外键可以参考自己的表格。这种被称为“自引”外键。

我们需要在数据库中创建一个addresses表,所以我们会创建另一个元数据,这将会跳过已经创建的表。

11.操作主外键关联的对象

现在我们已经在User类中创建了一个空的addresser集合,可变集合类型,例如setdict,都可以用,但是默认的集合类型是list

jack = User(name=jack, fullname=Jack Bean, password=gjffdd)
jack.addresses
[]

 

现在可以直接在User对象中添加Address对象。只需要指定一个完整的列表:

jack.addresses = [Address(email_address=jack@google.com),Address(email_address=j25@yahoo.com)]

 

当使用双向关系时,元素在一个类中被添加后便会自动在另一个类中添加。这种行为发生在Python的更改事件属性中而不是用SQL语句:
>>> jack.addresses[1]
<Address(email_address=j25@yahoo.com)>
>>> jack.addresses[1].user
<User(name=jack, fullname=Jack Bean, password=gjffdd)>

 

jack提交到数据库中,再次查询Jack,(No SQL is yet issued for Jack’s addresses:)这句实在是翻译不了了,看看代码就明白是什么意思:
>>> jack = session.query(User)....
filter_by(name=jack).one()

>>> jack
<User(name=jack,fullname=Jack Bean, password=gjffdd)>


>>>jack.addresses 
[<Address(email_address=jack@google.com)>,
<Address(email_address=j25@yahoo.com)>]

 

当我们访问uaddresses集合时,SQL会被突然执行,这是一个延迟加载(lazy loading)关系的典型例子。现在addresses集合加载完成并且可以像对待普通列表一样对其进行操作。以后我们会优化这种加载方式。
12.使用JOINS查询
现在我们有了两张表,可以进行更多的查询操作,特别是怎样对两张表同时进行查询,Wikipediapage on SQL JOIN提供了很详细的说明,其中一些我们将在这里说明。之前用Query.filter()时,我们已经用过JOIN了,

filter是一种简单的隐式join:
>>>for u, a in session.query(User, Address).filter(User.id==Address.user_id).filter(Address.email_address==jack@google.com).all():   
    print u
    print a
<User(name=jack,fullname=JackBean, password=gjffdd)>
<Address(email_address=jack@google.com)>

 

Query.join()方法会更加简单:
>>>session.query(User).join(Address)....
    filter(Address.email_address==jack@google.com)....
    all() 
[<User(name=jack,fullname=JackBean, password=gjffdd)>]

 

之所以Query.join()知道怎么join两张表是因为它们之间只有一个外键。如果两张表中没有外键或者有一个以上的外键,当下列几种形式使用的时候,Query.join()可以表现的更好:
query.join(Address,User.id==Address.user_id)# 明确的条件
query.join(User.addresses)# 指定从左到右的关系
query.join(Address,User.addresses)    #同样,有明确的目标
query.join(addresses) # 同样,使用字符串
    outerjoin()和join()用法相同
query.outerjoin(User.addresses)# LEFT OUTER JOIN

 

12.1使用别名
当在多个表中查询时,如果同一张表需要被引用好几次,SQL通常要求对这个表起一个别名,因此,SQL可以区分对这个表进行的其他操作。Query也支持别名的操作。下面我们joinAddress实体两次,找到同时拥有两个不同email的用户:
>>>from sqlalchemy.ormimport aliased
>>>adalias1 = aliased(Address)
>>>adalias2 = aliased(Address)
>>>for username, email1, email2 in...
    session.query(User.name,adalias1.email_address,adalias2.email_address)....
    join(adalias1, User.addresses)....
    join(adalias2, User.addresses)....
    filter(adalias1.email_address==jack@google.com)....
    filter(adalias2.email_address==j25@yahoo.com):
...
    print username, email1,
email2      
jack
jack@google.com j25@yahoo.com

 

12.1使用子查询(暂时理解不了啊,多看代码研究吧:()
from sqlalchemy.sqlimport func
stmt = session.query(Address.user_id,func.count(*)....
        label(address_count))....
        group_by(Address.user_id).subquery()
>>>
for u, count in session.query(User,stmt.c.address_count)....
    outerjoin(stmt, User.id==stmt.c.user_id).order_by(User.id):
    print u, count
<User(name=ed,fullname=EdJones, password=f8s7ccs)>
None
<User(name=wendy,fullname=Wendy Williams, password=foobar)>
None
<User(name=mary,fullname=Mary Contrary, password=xxg527)>
None
<User(name=fred,fullname=Fred Flinstone, password=blah)>
None
<User(name=jack,fullname=Jack Bean, password=gjffdd)>
2

 

12.2从子查询中选择实体?
上面的代码中我们只返回了包含子查询的一个列的结果。如果想要子查询映射到一个实体的话,使用aliased()设置一个要映射类的子查询别名:
>>>
stmt = session.query(Address).\
...
     filter(Address.email_address!= ‘j25@yahoo.com‘).\
...
     subquery()
>>>
adalias = aliased(Address, stmt)
#?为什么有两个参数?
>>>
for user, address in session.query(User, adalias).\
...
        join(adalias, User.addresses): 
...
    print user
...
    print address
<User(name=‘jack‘,fullname=‘Jack Bean‘, password=‘gjffdd‘)>
<Address(email_address=‘jack@google.com‘)>

12.3使用EXISTS(存在?)

如果表达式返回任何行EXISTS为真,这是一个布尔值。它可以用在jions中,也可以用来定位在一个关系表中没有相应行的情况:

>>>from sqlalchemy.sqlimport exists
>>>
stmt = exists().where(Address.user_id==User.id)
>>>for name, in session.query(User.name).filter(stmt):
    print name
jack

 

等价于:

>>>for name, in session.query(User.name)....
   filter(User.addresses.any()):
  
...
    print name
jack

 

any()限制行匹配:

>>>for name, in session.query(User.name)....
   
filter(User.addresses.any(Address.email_address.like(%google%))):
  
...
    print name
jack

 

has()any()一样在应对多对一关系的情况下(注意“~“意味着”NOT”

>>> session.query(Address)....
        filter(~Address.user.has(User.name==jack)).all()

[]

 

12.4 常见的关系运算符

== = None 都是用在多对一中,而contains()用在一对多的集合中:

query.filter(Address.user == someuser)
query.filter(User.addresses.contains(someaddress))

 

Any()(用于集合中):

query.filter(User.addresses.any(Address.email_address == bar))#also takes keyword arguments:
query.filter(User.addresses.any(email_address=bar))

 

has()(用在标量?不在集合中):

query.filter(Address.user.has(name=ed))

 

Query.with_parent()(所有关系都适用):

session.query(Address).with_parent(someuser,addresses)

 

SQLAlchemy技术文档(中文版)-下

原文:http://www.cnblogs.com/benjamin77/p/7912767.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!