首页 > 其他 > 详细

simhash和minhash实现理解

时间:2017-11-30 23:05:06      阅读:391      评论:0      收藏:0      [点我收藏+]

文本相似度算法

minhash

1. 把文档A分词形成分词向量L
2. 使用K个hash函数,然后每个hash将L里面的分词分别进行hash,然后得到K个被hash过的集合
3. 分别得到K个集合中的最小hash,然后组成一个长度为K的hash集合
4. 最后用Jaccard index求出两篇文档的相似度

simhash

1. 把文档A分词形成分词向量L,L中的每一个元素都包涵一个分词C以及一个分词的权重W
2. 对L中的每一个元素的分词C进行hash,得到C1,然后组成一个新的向量L1
3. 初始化一个长度大于C1长度的向量V,所有元素初始化为0
4. 分别判断L1中的每一个元素C1的第i位,如果C1i是1,那么Vi加上w,否则Vi减去w
5. 最后判断V中的每一项,如果第i项大于0,那么第i项变成1,否则变成0
6. 两篇文档a,b分别得到aV,bV
6. 最后求出aV和bV的海明距离,一般距离不大于3的情况下说明两篇文档是相似的

中文文档simhash值计算
simhash算法原理及实现
GoSimhash 是 中文 simhash 去重算法库,Golang版本。
simhash算法的原理
simhash与Google的网页去重

simhash和minhash实现理解

原文:http://www.cnblogs.com/bergus/p/simhash-heminhash-shi-xian-li-jie.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!