题目链接:uva 10140 - Prime Distance
题目大意:给出一个范围,问说该范围内,相邻的两个素数最大距离和最小距离。
解题思路:类似素数筛选法,起始位置有L开始,直到超过R,处理出素数之后就好办了。
#include <cstdio>
#include <cstring>
#include <cmath>
const int maxn = 1e6;
typedef long long ll;
int cp, v[maxn+5];
ll limit, prime[maxn+5];
void primeTable (int n) {
cp = 0;
memset(v, 0, sizeof(v));
for (int i = 2; i <= n; i++) {
if (v[i])
continue;
prime[cp++] = i;
for (int j = 2 * i; j <= n; j += i)
v[j] = 1;
}
}
inline ll cal(ll a, ll b) {
ll k = b / a;
if (b%a)
k++;
if (k * a <= limit && v[k*a] == 0)
k++;
return k * a;
}
int cnt, set[maxn+5], vis[maxn+5];
ll L, R;
void solve () {
memset(vis, 0, sizeof(vis));
ll m = sqrt(R+0.5);
for (int i = 0; i < cp; i++) {
if (prime[i] > m)
break;
for (ll j = cal(prime[i], L); j <= R; j += prime[i]) {
vis[j-L] = 1;
}
}
cnt = 0;
for (ll i = L; i <= R; i++) {
if (i == 1 || i == 0)
continue;
if (vis[i-L])
continue;
set[cnt++] = i-L;
}
}
int main () {
limit = 1<<16;
primeTable(limit);
while (scanf("%lld%lld", &L, &R) == 2) {
solve();
if (cnt <= 1)
printf("There are no adjacent primes.\n");
else {
int minRec, maxRec, minDis, maxDis;
maxDis = 0;
minDis = 1e7;
for (int i = 1; i < cnt; i++) {
int tmp = set[i] - set[i-1];
if (tmp > maxDis) {
maxDis = tmp;
maxRec = i;
}
if (tmp < minDis) {
minDis = tmp;
minRec = i;
}
}
printf("%lld,%lld are closest, %lld,%lld are most distant.\n", set[minRec-1]+L, set[minRec]+L, set[maxRec-1]+L, set[maxRec]+L);
}
}
return 0;
}
uva 10140 - Prime Distance(数论),布布扣,bubuko.com
uva 10140 - Prime Distance(数论)
原文:http://blog.csdn.net/keshuai19940722/article/details/36453513