首页 > 其他 > 详细

读《Deep Learning Tutorial》(台湾大学 李宏毅 深度学习教学ppt)后杂记

时间:2017-12-13 12:51:20      阅读:496      评论:0      收藏:0      [点我收藏+]

原ppt下载:pan.baidu.com/s/1nv54p9R,密码:3mty

 

需深入实践并理解的重要概念:

Deep Learning:

  • SoftMax Fuction(输出层归一化函数?)

DNN(Deep Neural Networks):

  • MSE(Means Square Error,均方误差) / CE(Cross Entropy,交叉熵)

          - Use to minimum total loss for softmax layer. CE is better.

  • Mini-batch & batch_size(decides how many examples in a mini-batch)
  • Vanishing Gradient Problem(梯度消失问题)
  • ReLU(Rectified Linear Unit,线性纠正单元)

          - As an activative function, used when the number of layers is quite large.

          - Special cases of MaxOut

  • Learnable activation function
  • Adaptive learning rate

          - Use a large rate first, then change to a small one

  • Momentum(动量原理)

          - Use the optimizer Adam(Advanced Adagrad Momentum)

  • Overfitting Problem(过拟合问题)

          - Use early stopping

  • Weight Decay(训练时用p%的dropout,测试时对权值做(1-p%)的调整后再获得输出)
  • Dropout(训练的过程舍弃神经元)

          - Will change structure of networks while training. better than MaxOut

CNN(Convolutional Neural Networks):

  • Image recognization suits to use CNN because of 3 important properties

          1) Patterns are much smaller than the whole image

          2) The same patterns appear in different regions

          3) Subsampling pixels does not change the object

  • filter & channel
  • stride(step)
  • zero-padding
  • max-pooling
  • flattern
  • less parameters because of sharing weights

读《Deep Learning Tutorial》(台湾大学 李宏毅 深度学习教学ppt)后杂记

原文:http://www.cnblogs.com/wrightcw/p/8032020.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!