首页 > 其他 > 详细

矩阵树Matrix-Tree定理与行列式

时间:2017-12-14 20:37:36      阅读:354      评论:0      收藏:0      [点我收藏+]

简单入门一下矩阵树Matrix-Tree定理。(本篇目不涉及矩阵树相关证明)

一些定义与定理

  • 对于一个无向图 G ,它的生成树个数等于其基尔霍夫Kirchhoff矩阵任何一个N-1阶主子式行列式绝对值。
  • 所谓的N-1阶主子式就是对于一个任意的一个 r ,将矩阵的第 r 行和第 r 列同时删去得到的新矩阵。
  • 基尔霍夫Kirchhoff矩阵的一种求法:

    基尔霍夫Kirchhoff矩阵 K =度数矩阵 D - 邻接矩阵 A

基尔霍夫Kirchhoff矩阵的具体构造

  • 度数矩阵D:是一个 ${N}\times{N}$ 的矩阵,其中

    $D[i][j]=0\;{(i}\neq{j)}$,$D[i][i]=i号点的度数$

  • 邻接矩阵A:是一个 ${N}\times{N}$ 的矩阵,其中

    ${D[i][i]=0}\;{,}\;{A[i][j]=A[j][i]=i,j之间的边数}$

  • 然后基尔霍夫Kirchhoff矩阵K=D-A
  • 举个例子,对于如下的无向图,三个矩阵分别为

    技术分享图片

行列式det(K)求法

  • 已经得出了基尔霍夫Kirchhoff矩阵,那么随便去掉某一行一列并计算出新矩阵的行列式,其绝对值即为生成树个数。
  • ${det(K)=}\sum_{P}^{ }\;{(}{(-1)}^{\tau{(P)}}\times{K}_{1,p1}\times{K}_{2,p2}\times{K}_{3,p3}\times\cdots\times{K}_{N,pN}{)}$
  • 上面的式子中的 P 为 1~N 的任意一个排列。$\tau{(P)}$表示排列 P 的逆序对数。而那个求和式的每一项可以看做是在矩阵中选出N个数,使得他们的行列都不重合。
  • 求和式共有$N!$项,暴力求法的复杂度 ${O(N!)}\times{N}$

1

1

1

1

1

1

矩阵树Matrix-Tree定理与行列式

原文:http://www.cnblogs.com/zj75211/p/8039443.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!