首页 > 其他 > 详细

卷积神经网络的理解

时间:2017-12-15 15:59:11      阅读:884      评论:0      收藏:0      [点我收藏+]

CNN中减少参数的2两个规则:

1、局部感知。生物学中,视觉皮层的神经元是局部感知信息的,只响应某些特定区域的刺激;图像的空间联系中,局部的像素联系较为紧密,距离较远的像素相关性较弱。

  这个对应于算法中卷积核的大小,mnist手写识别在28*28的像素中取patch为5*5。

技术分享图片

上图中:左边是全连接,右边是局部连接。

2、权值共享。每个神经元对应的参数(权值)都相等。隐含的原理是:图像的一部分的统计特性与其他部分是一样的。那么在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,都能使用同样的学习特征。

 

注:卷积可参考数字图像处理中的滤波处理,滤波就是对于大矩阵中的每个像素, 计算它周围像素滤波器(卷积核)矩阵对应位置元素的乘积, 然后把结果相加到一起, 最终得到的值就作为该像素的新值, 这样就完成了一次滤波。该过程也叫卷积,区别在于,图像卷积计算,需要先翻转卷积核, 也就是绕卷积核中心旋转 180度。

技术分享图片

以下转自http://blog.csdn.net/mao_xiao_feng/article/details/78004522

1)tf卷积函数

惯例先展示函数:

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)

除去name参数用以指定该操作的name,与方法有关的一共五个参数:

  • input: 
    指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一

  • filter: 
    相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维

  • strides:卷积时在图像每一维的滑动步长,这是一个一维的向量,长度4

  • padding: 
    string类型的量,只能是”SAME”,”VALID”其中之一,这个值决定了不同的卷积方式(“SAME”允许卷积核停留在图像边缘,保证输入与输出大小相同;“valid”则卷积核不能停留在图像边缘,输出图像会变小,若输入5*5,使用3*3卷积核,则输出3*3)

  • use_cudnn_on_gpu: 
    bool类型,是否使用cudnn加速,默认为true

结果返回一个Tensor,这个输出,就是我们常说的feature map。

2)tf最大值池化函数

tf.nn.max_pool(value, ksize, strides, padding, name=None)

参数是四个,和卷积很类似:

 第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape

第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1

第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]

第四个参数padding:和卷积类似,可以取‘VALID‘ 或者‘SAME‘

返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式。

总结:卷积或池化后特征图谱的大小主要取决于滑动步长(strides)和padding(边距处理方式)。strides=1,padding=‘SAME’,则输入与输出大小相同;strides=2或padding=‘valid’都会使输出图像变小。

 

卷积神经网络的理解

原文:http://www.cnblogs.com/xiaoxiong-kankan/p/8043452.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!