首页 > 其他 > 详细

Fibonacci

时间:2014-07-06 16:15:54      阅读:690      评论:0      收藏:0      [点我收藏+]

Interesting Fibonacci

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 672    Accepted Submission(s): 116

Problem Description
In mathematics, the Fibonacci numbers are a sequence of numbers named after Leonardo of Pisa, known as Fibonacci (a contraction of filius Bonaccio, "son of Bonaccio"). Fibonacci‘s 1202 book Liber Abaci introduced the sequence to Western European mathematics, although the sequence had been previously described in Indian mathematics.   The first number of the sequence is 0, the second number is 1, and each subsequent number is equal to the sum of the previous two numbers of the sequence itself, yielding the sequence 0, 1, 1, 2, 3, 5, 8, etc. In mathematical terms, it is defined by the following recurrence relation: bubuko.com,布布扣 That is, after two starting values, each number is the sum of the two preceding numbers. The first Fibonacci numbers (sequence A000045 in OEIS), also denoted as F[n]; F[n] can be calculate exactly by the following two expressions: bubuko.com,布布扣 bubuko.com,布布扣 A Fibonacci spiral created by drawing arcs connecting the opposite corners of squares in the Fibonacci tiling; this one uses squares of sizes 1, 1, 2, 3, 5, 8, 13, 21, and 34;
So you can see how interesting the Fibonacci number is. Now AekdyCoin denote a function G(n) bubuko.com,布布扣 Now your task is quite easy, just help AekdyCoin to calculate the value of G (n) mod C
 
Input
The input consists of T test cases. The number of test cases (T is given in the first line of the input. Each test case begins with a line containing A, B, N, C (10<=A, B<2^64, 2<=N<2^64, 1<=C<=300)
 
Output
For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the value of G(N) mod C
 
Sample Input
1 17 18446744073709551615 1998 139
 
Sample Output
Case 1: 120
 
Author
AekdyCoin
 
 
 
 
 
Power of Fibonacci

Time Limit: 5 Seconds      Memory Limit: 65536 KB

In mathematics, Fibonacci numbers or Fibonacci series or Fibonacci sequence are the numbers of the following integer sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...

By definition, the first two numbers in the Fibonacci sequence are 1 and 1, and each subsequent number is the sum of the previous two. In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation Fn = Fn - 1 + Fn - 2 with seed values F1 = 1 and F2 = 1.

And your task is to find ΣFiK, the sum of the K-th power of the first N terms in the Fibonacci sequence. Because the answer can be very large, you should output the remainder of the answer divided by 1000000009.

Input

There are multiple test cases. The first line of input is an integer T indicates the number of test cases. For each test case:

There are two integers N and K (0 <= N <= 1018, 1 <= K <= 100000).

Output

For each test case, output the remainder of the answer divided by 1000000009.

Sample Input

5
10 1
4 20
20 2
9999 99
987654321987654321 98765

Sample Output

143
487832952
74049690
113297124
108672406

Hint

The first test case, 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143.

The second test case, 120 + 120 + 220 + 320 =3487832979, and 3487832979 = 3 * 1000000009 + 487832952, so the output is 487832952.


Author: ZHOU, Yuchen
 
 
 
 
 
题目来源:
基准时间限制:
Fib(N)表示斐波那契数列的第N项(F(0) = 0, F(1) = 1),给出N和K,求Fib(N) mod Fib(K)。
Input
Output
Input 示例
2
5 5
13 5
Output 示例
0
3



2014年蓝桥杯的第九题是这样描述的:

    

    给定Fibonacci数列F[],其中bubuko.com,布布扣bubuko.com,布布扣,求表达式

 

       bubuko.com,布布扣

    

    的值。其中bubuko.com,布布扣

 

 

 

E - 喵喵的遗憾

Time Limit: 20000/10000MS (Java/Others)      Memory Limit: 512000/256000KB (Java/Others)

 

Problem Description

喵喵因为太弱,没有进Final,终身遗憾。她就挂在了这个题目上。

bubuko.com,布布扣

已知:

F0 = 1 , F1 = 1 , F2 = 2 , Fn = Fn-1+Fn-2

求:

FFFn Mod P

( 也就是 F[ F[ F[n] ] ]  % P ) 

 

Input

第一行一个整数 T 代表数据组数(T ≤ 20000)。                                                <del> bubuko.com,布布扣喵以人格担保时限肯定够!!!</del>

以下每行两个整数 N , P (0 ≤ N ≤ 109 , 1 ≤ P ≤ 109)

Output

对于每组数据输出一个整数代表答案。

Sample Input

4
1 2
2 3
4 35
4 31 

Sample Output

1
2
34
3

Hint

F1 = 1 , F1 = 1 , F1 = 1

F2 = 2 , F2 = 2 , F2 = 2

F4 = 5 , F5 = 8 , F8 = 34

 

3286: Fibonacci矩阵

Time Limit: 15 Sec  Memory Limit: 128 MB Submit: 131  Solved: 29 [Submit][Status]

Description

 

Input

八个用空格隔开的整数n, m, a, b, c, d, e, f,其中n, m, a, b, d, e为正整数,c, f为非负整数。

 

Output

一个整数,表示Fib[n][m]对2012182013取模的值。

 

Sample Input

3 4 1 1 0 1 1 0

Sample Output

144

HINT

n,m,a,b,c,d,e,f<=10^1000000

Source

 

 

优美的Fibonacci数列与矩阵

分类: 数学问题

题目:http://codeforces.com/contest/392/problem/C

 

题意:给定Fibonacci数列F[],令bubuko.com,布布扣,求bubuko.com,布布扣的值。

 

 

 

 

    

广义Fibonacci数列找循环节             

 

        分类:             数学问题             

 

今天将来学习如何求广义Fibonacci数列的循环节。

 

问题:给定bubuko.com,布布扣,满足bubuko.com,布布扣,求bubuko.com,布布扣的循

     环节长度。

 

来源:http://acdreamoj.sinaapp.com/ 1075

 

 

 

 

 

 

 

题目来源:

 

基准时间限制:

 

斐波那契数列Mod 一个数N会得到一个新的数列,根据同余可以得知,这个数列中的数会出现循环。例如: 
F (mod 4) = 0 1 1 2 3 1 ... 
F (mod 5) = 0 1 1 2 3 0 3 3 1 4 0 4 4 3 2 0 2 2 4 1 ...
 
后面的数会出现循环,因此Fib Mod 4的循环节长度是6,Fib Mod 5的循环节长度是20。
给出一个数N,求斐波那契数列Mod N的循环节的长度。

 

Input

 

 

Output

 

 

Input 示例

 

2
4
5

 

Output 示例

 

6
20




 
题目来源:
基准时间限制:
Fib(N)表示斐波那契数列的第N项(F(0) = 0, F(1) = 1),给出N和K,求Fib(N) mod Fib(K)。
Input
Output
Input 示例
2
5 5
13 5
Output 示例
0
3



 
题目来源:
基准时间限制:
F(n)表示斐波那契数列的第N项(F(0) = 0, F(1) = 1),给出一个数N,输出F(n)质因数分解的表示。例如:
 
F(0)= 0
F(1)= 1
F(2)= 1
F(10)= 5 * 11
F(30)= 2^3 * 5 * 11 * 31 * 61
Input
Output
Input 示例
100
Output 示例
F(100)= 3 * 5^2 * 11 * 41 * 101 * 151 * 401 * 3001 * 570601





 
基准时间限制:
斐波那契字符串的定义如下:
 
f(1) = a
f(2) = b
f(n) = f(n-1) + f(n-2),(n > 2)
 
所以前6个斐波那契字符串是:"a", "b", "ba", "bab", "babba",  "babbabab"
现在给出一个编号n,再给出1个字符串s,求f(n)包含多多少个s。
例如:n = 6,s = "ba",f(6) = "babbabab",包含了3个"ba"。输出3。由于数量巨大,只要输出Mod 10^9 + 7的结果。
Input
Output
Input 示例
6
ba
Output 示例
3

 

 


 

1021 Fibonacci Again Leojay   (17212/35677)48.24%
1250 Hat‘s Fibonacci 戴帽子的   (2278/6923)32.90%
1568 Fibonacci daringQQ Happy 2007 (1484/3238)45.83%
1588 Gauss Fibonacci DYGG HDU “Valentines Day” Open Programming Contest 2007-02-14 (885/2030)43.60%
1708 Fibonacci String linle HDU 2007-Spring Programming Contest (1122/3263)34.39%
1848 Fibonacci again and again lcy ACM Short Term Exam_2007/12/13 (1907/4528)42.12%
2814 Interesting Fibonacci AekdyCoin HDU 1st “Old-Vegetable-Birds Cup” Programming Open Contest (116/672)17.26%
2855 Fibonacci Check-up   2009 Multi-University Training Contest 5 - Host by NUDT (626/1120)55.89%
3054 Fibonacci   2009 Multi-University Training Contest 15 - Host by BUAA (83/212)39.15%
3117 Fibonacci Numbers   IPCP 2005 Northern Preliminary for Northeast North-America (676/1709)39.56%
3306 Another kind of Fibonacci wyb HDOJ Monthly Contest – 2010.02.06 (561/1464)38.32%
3509 Buge‘s Fibonacci Number Problem   2010 ACM-ICPC Multi-University Training Contest(8)——Host by ECNU (179/643)27.84%
4099 Revenge of Fibonacci   2011 Asia Shanghai Regional Contest (456/1963)23.23%
4786 Fibonacci Tree   2013 Asia Chengdu Regional Contest (308/1043)29.53%

 

Fibonacci,布布扣,bubuko.com

Fibonacci

原文:http://www.cnblogs.com/HaibaraAi/p/3825349.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!