首页 > 其他 > 详细

Difference Between Session.run and Tensor.eval

时间:2018-01-05 00:50:50      阅读:227      评论:0      收藏:0      [点我收藏+]

【Question】:

TensorFlow has two ways to evaluate part of graph: Session.run on a list of variables and Tensor.eval. Is there a difference between these two?

【Answer】:

If you have a Tensor t, calling t.eval() is equivalent to calling tf.get_default_session().run(t).

You can make a session the default as follows:

t = tf.constant(42.0)
sess = tf.Session()
with sess.as_default():   # or `with sess:` to close on exit
    assert sess is tf.get_default_session()
    assert t.eval() == sess.run(t)

 

The most important difference is that you can use sess.run() to fetch the values of many tensors in the same step:

t = tf.constant(42.0)
u = tf.constant(37.0)
tu = tf.mul(t, u)
ut = tf.mul(u, t)
with sess.as_default():
   tu.eval()  # runs one step
   ut.eval()  # runs one step
   sess.run([tu, ut])  # evaluates both tensors in a single step

 

Note that each call to eval and run will execute the whole graph from scratch. To cache the result of a computation, assign it to a tf.Variable.

 

----------------------------------------------------------

参考:

  1. http://blog.csdn.net/zcf1784266476/article/details/70259676

Difference Between Session.run and Tensor.eval

原文:https://www.cnblogs.com/hezhiyao/p/8196645.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!